355 research outputs found

    Dynamic compensation in the central Pacific Ocean

    Get PDF
    The intermediate-wavelength geoid (lambda similar to 2000 km) and sea-floor topography fields in the central Pacific Ocean were studied in terms of static and dynamic compensation models. Topographic features on the sea-floor with lambda less than 1000 km were found to be compensated both regionally, by the elastic strength of the lithosphere, and locally, by displacing mantle material to reach isostatic adjustment. The larger-scale sea-floor topography and the corresponding geoid anomalies with lambda similar to 2000 km cannot be explained by either local or regional compensation. The topography and the resulting geoid anomaly at this wavelength were modeled by considering the dynamic effects arising from viscous stresses in a layer of fluid with a highly temperature-dependent viscosity for the cases of: (1) surface cooling, and (2) basal heating. In this model, the mechanical properties of the elastic part of the lithosphere were taken into account by considering an activation energy of about 520 kJ/mol in the Arrhenius law for the viscosity. Numerical predictions of the topography, total geoid anomaly, and admittance were obtained, and the results show that the thermal perturbation in the layer, which accounts for the mass deficit, must be located close to the surface to compensate the gravitational effect of the surface deformation. For the case of basal heating, the temperature dependence of viscosity results in a separation of the upper, quasi-rigid lid from the lower mobile fluid, hence inhibiting the development of a compensating thermal perturbation at shallow depths. The results clearly rule out small-scale, upper-mantle convection as the source of these anomalies. Instead, the geophysical observables can be well explained by a shallow, transient thermal perturbation

    The delineation and interpretation of the earth's gravity field

    Get PDF
    A series of fluid dynamical experiments in variable viscosity fluid have been made and are in progress to study: (1) the onset of small scale convection relative to lithosphere growth rate; (2) the influence of paired fracture zones in modulating the horizontal scale of small scale convection; (3) the influence of the mantle vertical viscosity structure on determing the mode of small scale convection; and (4) the 3-D and temporal evolution of flows beneath a high viscosity lid. These experiments extend and amplify the present experimental work that has produced small scale convection beneath a downward-moving solidification front. Rapid growth of a high viscosity lid stifles the early onset of convection such that convection only begins once the lithosphere is older than a certain minimum age. The interplay of this convection with both the structure of the lithosphere and mantle provide a fertile field of investigation into the origin of geoid, gravity, and topographic anomalies in the central Pacific. These highly correlated fields of intermediate wavelength (approximately 200 to 2000 km), but not the larger wavelengths. It is the ultimate, dynamic origin of this class of anomalies that is sought in this investigation

    Modelling mid-crustal migmatite terrains as feeder zones for granite plutons: the competing dynamics of melt transfer by bulk versus porous flow

    Get PDF
    The common association of mid-crustal migmatites with an upper-level granite pluton could indicate that the migmatites are a feeder zone for the pluton. If magma from a deeper level pervasively intrudes a high temperature metamorphic complex, most of the intruded magma would not freeze because of the prevailing temperature. The interaction between the magma and country rocks, which could include partial melting and crystallisation of the magma passing through, would modify magma to a more granitic composition, as found in the higher-level pluton. The physical aspect of the magma transport through such a hot feeder zone is modelled by introducing a dimensionless melt transport (MT) number, which is the ratio of the rate of melt movement caused by the bulk flow of the entire mass (melt+solid) to that of porous media flow of melt only through the solid framework. The MT number is strongly dependent on the melt content of the melt-rich zone (MRZ), the diameter of the MRZ and typical particle size in the MRZ. The 300-Ma, diatexitic, Lauterbrunnen migmatites (LM) in the Aar massif, Swiss Alps, may be such a feeder zone for the nearby 303-Ma Gastern granite (GG). The chemical and field evidence indicates that the LM formed by an intrusion of intermediate composition magma, which interacted with country rocks to produce a magma of GG compos

    Kinetics of tissue distribution and elimination of 4,4'-methylene bis(2-chloroaniline) in rats

    Full text link
    The tissue distribution kinetics and elimination of 4,4'-methylene bis(2-chloroaniline) (MBOCA) in rats was studied after a single dose of [14C]MBOCA (0.49 mg/kg body weight, i.V.). The highest concentrations of radioactivity were in the small intestine, liver, adipose, lung, kidney, skin, and adrenals. For most tissues, a rapid decrease in radioactivity was followed by a slower decrease except for the small intestine, adipose and skin which demonstrated transient increases. Subcellular distribution in liver at 1 h showed radioactivity in all cell fractions. Although very lipophilic, [14C]MBOCA was completely eliminated within 48 h with the major route via the feces (73.4%).Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/25193/1/0000632.pd

    Bioassay studies support the potential for latrogenic transmission of variant Creutzfeldt Jakob disease through dental procedures

    Get PDF
    Background: Evidence is required to quantify the potential risks of transmission of variant Creutzfeldt Jakob (vCJD) through dental procedures. Studies, using animal models relevant to vCJD, were performed to address two questions. Firstly, whether oral tissues could become infectious following dietary exposure to BSE? Secondly, would a vCJD-contaminated dental instrument be able to transmit disease to another patient? Methods: BSE-301V was used as a clinically relevant model for vCJD. VM-mice were challenged by injection of infected brain homogenate into the small intestine (Q1) or by five minute contact between a deliberately-contaminated dental file and the gingival margin (Q2). Ten tissues were collected from groups of challenged mice at three or four weekly intervals, respectively. Each tissue was pooled, homogenised and bioassayed in indicator mice. Findings: Challenge via the small intestine gave a transmission rate of 100% (mean incubation 157±17 days). Infectivity was found in both dental pulp and the gingival margin within 3 weeks of challenge and was observed in all tissues tested within the oral cavity before the appearance of clinical symptoms. Following exposure to deliberately contaminated dental files, 97% of mice developed clinical disease (mean incubation 234±33 days). Interpretation: Infectivity was higher than expected, in a wider range of oral tissues, than was allowed for in previous risk assessments. Disease was transmitted following transient exposure of the gingiva to a contaminated dental file. These observations provide evidence that dental procedures could be a route of cross-infection for vCJD and support the enforcement of single-use for certain dental instruments

    The Influence of Mammographic Technologists on Radiologists' Ability to Interpret Screening Mammograms in Community Practice

    Get PDF
    To determine whether the mammographic technologist has an effect on the radiologists’ interpretative performance of screening mammography in community practice

    Do Mammographic Technologists Affect Radiologists’ Diagnostic Mammography Interpretative Performance?

    Get PDF
    The purpose of this study was to determine whether the technologist has an effect on the radiologists’ interpretative performance of diagnostic mammography

    Football Banning Orders: The Highly Effective Cornerstone of a Preventative Strategy?

    Get PDF
    The chapter examines the development, use and effectiveness of football banning orders in the UK, comparing their use in England to address issues of football 'hooliganism' with their distinct evolution in Scotland to address concerns around sectarian disorder

    Ultrahigh Surface Area Three-Dimensional Porous Graphitic Carbon from Conjugated Polymeric Molecular Framework

    Get PDF
    Porous graphitic carbon is essential for many applications such as energy storage devices, catalysts, and sorbents. However, current graphitic carbons are limited by low conductivity, low surface area, and ineffective pore structure. Here we report a scalable synthesis of porous graphitic carbons using a conjugated polymeric molecular framework as precursor. The multivalent cross-linker and rigid conjugated framework help to maintain micro- and mesoporous structures, while promoting graphitization during carbonization and chemical activation. The above unique design results in a class of highly graphitic carbons at temperature as low as 800 ??C with record-high surface area (4073 m2 g-1), large pore volume (2.26 cm-3), and hierarchical pore architecture. Such carbons simultaneously exhibit electrical conductivity >3 times more than activated carbons, very high electrochemical activity at high mass loading, and high stability, as demonstrated by supercapacitors and lithium-sulfur batteries with excellent performance. Moreover, the synthesis can be readily tuned to make a broad range of graphitic carbons with desired structures and compositions for many applications.clos
    corecore