254 research outputs found
Discovery of the magnetic field of the B1/B2V star \sigma Lupi
In our search for new magnetic massive stars we use the strongest indirect
indicator of a magnetic field in B stars, which is periodic variability of UV
stellar wind lines occurring in a velocity range symmetric around zero. Our aim
is to obtain follow-up spectropolarimetry to search for a magnetic field in
magnetic candidate stars. We quantify UV wind line variability, and analyse its
time behaviour. The B1/B2V star sigma Lup emerged as a new magnetic candidate
star. AAT spectropolarimetric measurements with SEMPOL were obtained.
The stellar wind line variations of sigma Lup are similar to what is known in
magnetic B stars, but no periodicity could be determined. We detected a
longitudinal magnetic field with varying strength and amplitude of about 100 G
with error bars of typically 20 G, which supports an oblique magnetic-rotator
configuration. The equivalent width variations of the UV lines, the magnetic
and the optical line variations are consistent with the well-known photometric
period of 3.02 days, which we identify with the rotation period of the star.
Additional observations with ESPaDOnS at CFHT strongly confirmed this
discovery, and allowed to determine a precise magnetic period. Further analysis
revealed that Lupi is a helium-strong star, with an enhanced nitrogen
abundance and an underabundance of carbon, and has a spotted surface.
We conclude that sigma Lup is a magnetic oblique rotator, and is a He-strong
star. It is the 4th B star for which a magnetic field is discovered from
studying only its wind variability. Like in the other magnetic B stars the wind
emission originates in the magnetic equator, with maximum emission occurring
when a magnetic pole points towards the Earth. The 3.02 d magnetic rotation
period is consistent with the photometric period, with maximum light
corresponding to maximum magnetic field. A full paper will be submitted to A&A.Comment: 4 pages, 5 figures, to appear in proceedings with AIP. Stellar
polarimetry: From birth to death, Eds. Jennifer Hoffman, Barb Whitney, and
Jon Bjorkma
The Science of Sungrazers, Sunskirters, and Other Near-Sun Comets
This review addresses our current understanding of comets that venture close to the Sun, and are hence exposed to much more extreme conditions than comets that are typically studied from Earth. The extreme solar heating and plasma environments that these objects encounter change many aspects of their behaviour, thus yielding valuable information on both the comets themselves that complements other data we have on primitive solar system bodies, as well as on the near-solar environment which they traverse. We propose clear definitions for these comets: We use the term near-Sun comets to encompass all objects that pass sunward of the perihelion distance of planet Mercury (0.307 AU). Sunskirters are defined as objects that pass within 33 solar radii of the Sun’s centre, equal to half of Mercury’s perihelion distance, and the commonly-used phrase sungrazers to be objects that reach perihelion within 3.45 solar radii, i.e. the fluid Roche limit. Finally, comets with orbits that intersect the solar photosphere are termed sundivers. We summarize past studies of these objects, as well as the instruments and facilities used to study them, including space-based platforms that have led to a recent revolution in the quantity and quality of relevant observations. Relevant comet populations are described, including the Kreutz, Marsden, Kracht, and Meyer groups, near-Sun asteroids, and a brief discussion of their origins. The importance of light curves and the clues they provide on cometary composition are emphasized, together with what information has been gleaned about nucleus parameters, including the sizes and masses of objects and their families, and their tensile strengths. The physical processes occurring at these objects are considered in some detail, including the disruption of nuclei, sublimation, and ionisation, and we consider the mass, momentum, and energy loss of comets in the corona and those that venture to lower altitudes. The different components of comae and tails are described, including dust, neutral and ionised gases, their chemical reactions, and their contributions to the near-Sun environment. Comet-solar wind interactions are discussed, including the use of comets as probes of solar wind and coronal conditions in their vicinities. We address the relevance of work on comets near the Sun to similar objects orbiting other stars, and conclude with a discussion of future directions for the field and the planned ground- and space-based facilities that will allow us to address those science topics
Dynamics in online social networks
An increasing number of today's social interactions occurs using online
social media as communication channels. Some online social networks have become
extremely popular in the last decade. They differ among themselves in the
character of the service they provide to online users. For instance, Facebook
can be seen mainly as a platform for keeping in touch with close friends and
relatives, Twitter is used to propagate and receive news, LinkedIn facilitates
the maintenance of professional contacts, Flickr gathers amateurs and
professionals of photography, etc. Albeit different, all these online platforms
share an ingredient that pervades all their applications. There exists an
underlying social network that allows their users to keep in touch with each
other and helps to engage them in common activities or interactions leading to
a better fulfillment of the service's purposes. This is the reason why these
platforms share a good number of functionalities, e.g., personal communication
channels, broadcasted status updates, easy one-step information sharing, news
feeds exposing broadcasted content, etc. As a result, online social networks
are an interesting field to study an online social behavior that seems to be
generic among the different online services. Since at the bottom of these
services lays a network of declared relations and the basic interactions in
these platforms tend to be pairwise, a natural methodology for studying these
systems is provided by network science. In this chapter we describe some of the
results of research studies on the structure, dynamics and social activity in
online social networks. We present them in the interdisciplinary context of
network science, sociological studies and computer science.Comment: 17 pages, 4 figures, book chapte
Origins of the Ambient Solar Wind: Implications for Space Weather
The Sun's outer atmosphere is heated to temperatures of millions of degrees,
and solar plasma flows out into interplanetary space at supersonic speeds. This
paper reviews our current understanding of these interrelated problems: coronal
heating and the acceleration of the ambient solar wind. We also discuss where
the community stands in its ability to forecast how variations in the solar
wind (i.e., fast and slow wind streams) impact the Earth. Although the last few
decades have seen significant progress in observations and modeling, we still
do not have a complete understanding of the relevant physical processes, nor do
we have a quantitatively precise census of which coronal structures contribute
to specific types of solar wind. Fast streams are known to be connected to the
central regions of large coronal holes. Slow streams, however, appear to come
from a wide range of sources, including streamers, pseudostreamers, coronal
loops, active regions, and coronal hole boundaries. Complicating our
understanding even more is the fact that processes such as turbulence,
stream-stream interactions, and Coulomb collisions can make it difficult to
unambiguously map a parcel measured at 1 AU back down to its coronal source. We
also review recent progress -- in theoretical modeling, observational data
analysis, and forecasting techniques that sit at the interface between data and
theory -- that gives us hope that the above problems are indeed solvable.Comment: Accepted for publication in Space Science Reviews. Special issue
connected with a 2016 ISSI workshop on "The Scientific Foundations of Space
Weather." 44 pages, 9 figure
Analysis of a General Family of Regularized Navier-Stokes and MHD Models
We consider a general family of regularized Navier-Stokes and
Magnetohydrodynamics (MHD) models on n-dimensional smooth compact Riemannian
manifolds with or without boundary, with n greater than or equal to 2. This
family captures most of the specific regularized models that have been proposed
and analyzed in the literature, including the Navier-Stokes equations, the
Navier-Stokes-alpha model, the Leray-alpha model, the Modified Leray-alpha
model, the Simplified Bardina model, the Navier-Stokes-Voight model, the
Navier-Stokes-alpha-like models, and certain MHD models, in addition to
representing a larger 3-parameter family of models not previously analyzed. We
give a unified analysis of the entire three-parameter family using only
abstract mapping properties of the principle dissipation and smoothing
operators, and then use specific parameterizations to obtain the sharpest
results. We first establish existence and regularity results, and under
appropriate assumptions show uniqueness and stability. We then establish
results for singular perturbations, including the inviscid and alpha limits.
Next we show existence of a global attractor for the general model, and give
estimates for its dimension. We finish by establishing some results on
determining operators for subfamilies of dissipative and non-dissipative
models. In addition to establishing a number of results for all models in this
general family, the framework recovers most of the previous results on
existence, regularity, uniqueness, stability, attractor existence and
dimension, and determining operators for well-known members of this family.Comment: 37 pages; references added, minor typos corrected, minor changes to
revise for publicatio
The Relation Between the Surface Brightness and the Diameter for Galactic Supernova Remnants
In this work, we have constructed a relation between the surface brightness
() and diameter (D) of Galactic C- and S-type supernova remnants
(SNRs). In order to calibrate the -D dependence, we have carefully
examined some intrinsic (e.g. explosion energy) and extrinsic (e.g. density of
the ambient medium) properties of the remnants and, taking into account also
the distance values given in the literature, we have adopted distances for some
of the SNRs which have relatively more reliable distance values. These
calibrator SNRs are all C- and S-type SNRs, i.e. F-type SNRs (and S-type SNR
Cas A which has an exceptionally high surface brightness) are excluded. The
Sigma-D relation has 2 slopes with a turning point at D=36.5 pc: (at 1
GHz)=8.4 D
WmHzster (for
WmHzster and D36.5 pc) and (at 1
GHz)=2.7 10 D
WmHzster (for
WmHzster and D36.5 pc). We discussed the theoretical
basis for the -D dependence and particularly the reasons for the change
in slope of the relation were stated. Added to this, we have shown the
dependence between the radio luminosity and the diameter which seems to have a
slope close to zero up to about D=36.5 pc. We have also adopted distance and
diameter values for all of the observed Galactic SNRs by examining all the
available distance values presented in the literature together with the
distances found from our -D relation.Comment: 45 pages, 2 figures, accepted for publication in Astronomical and
Astrophysical Transaction
Heliolatitude and time variations of solar wind structure from in situ measurements and interplanetary scintillation observations
The 3D structure of solar wind and its evolution in time is needed for
heliospheric modeling and interpretation of energetic neutral atoms
observations. We present a model to retrieve the solar wind structure in
heliolatitude and time using all available and complementary data sources. We
determine the heliolatitude structure of solar wind speed on a yearly time grid
over the past 1.5 solar cycles based on remote-sensing observations of
interplanetary scintillations, in situ out-of-ecliptic measurements from
Ulysses, and in situ in-ecliptic measurements from the OMNI-2 database. Since
the in situ information on the solar wind density structure out of ecliptic is
not available apart from the Ulysses data, we derive correlation formulae
between solar wind speed and density and use the information on the solar wind
speed from interplanetary scintillation observations to retrieve the 3D
structure of solar wind density. With the variations of solar wind density and
speed in time and heliolatitude available we calculate variations in solar wind
flux, dynamic pressure and charge exchange rate in the approximation of
stationary H atoms.Comment: Accepted for publication in Solar Physic
- …