50 research outputs found

    Vitamin B2 and Innovations in Improving Blood Safety

    Get PDF
    Although transfusion of blood components is becoming increasingly safe, the risk of transmission of known and unknown pathogens persists. The application of vitamin B2 (riboflavin) and UV light to pathogen inactivation has several appealing factors. Riboflavin is a naturally occurring vitamin with a well-known and well-characterized safety profile. This photochemical-based method is effective against clinically relevant pathogens and inactivates leukocytes without significantly compromising the content and the efficacy of whole blood or blood component. This chapter gives an overview of the innovative technology for pathogen inactivation, the Mirasol® pathogen reduction technology (PRT) System, based on riboflavin and UV light, summarizing the mechanism of action, toxicology profile, pathogen reduction performance and clinical efficacy of the process

    Assessment of intraductal carcinoma in situ (DCIS) using grating-based X-ray phase-contrast CT at conventional X-ray sources: An experimental ex-vivo study

    Get PDF
    Background The extent of intraductal carcinoma in situ (DCIS) is commonly underestimated due to the discontinuous growth and lack of microcalcifications. Specimen radiography has been established to reduce the rate of re-excision. However, the predictive value for margin assessment with conventional specimen radiography for DCIS is low. In this study we assessed the potential of grating-based phase-contrast computed tomography (GBPC-CT) at conventional X-ray sources for specimen tomography of DCIS containing samples. Materials and methods GBPC-CT was performed on four ex-vivo breast specimens containing DCIS and invasive carcinoma of non-specific type. Phase-contrast and absorption-based datasets were manually matched with corresponding histological slices as the standard of reference. Results Matching of CT images and histology was successful. GBPC-CT showed an improved soft tissue contrast compared to absorption-based images revealing more histological details in the same sections. Non-calcifying DCIS exceeding the invasive tumor could be correlated to areas of dilated bright ducts around the tumor. Conclusions GBPC-CT imaging at conventional X-ray sources offers improved depiction quality for the imaging of breast tissue samples compared to absorption-based imaging, allows the identification of diagnostically relevant tissue details, and provides full three-dimensional assessment of sample margins

    International Consensus Conference for Advanced Breast Cancer, Lisbon 2019: ABC5 Consensus – Assessment by a German Group of Experts

    Get PDF
    The 5th International Consensus Conference for Advanced Breast Cancer (ABC5) took place on November 14–16, 2019, in Lisbon, Portugal. Its aim is to standardize the treatment of advanced breast cancer based on the available evidence and to ensure that all breast cancer patients worldwide receive adequate treatment and access to new therapies. This year, the conference focused on developments and study results in the treatment of patients with hormone receptor-positive/HER2-negative breast cancer as well as precision medicine. As in previous years, patient advocates from around the world were integrated into the ABC conference and had seats on the ABC consensus panel. In the present paper, a working group of German breast cancer experts comments on the results of the on-site ABC5 consensus votes by ABC panelists regarding their applicability for routine treatment in Germany. These comments take the recommendations of the Breast Committee of the Gynecological Oncology Working Group (Arbeitsgemeinschaft Gynäkologische Onkologie; AGO) into account. The report and assessment presented here pertain to the preliminary results of the ABC5 consensus. The final version of the statements will be published in Annals of Oncology and The Breast

    Visualizing Typical Features of Breast Fibroadenomas Using Phase-Contrast CT: An Ex-Vivo Study

    Get PDF
    Background: Fibroadenoma is the most common benign solid breast lesion type and a very common cause for histologic assessment. To justify a conservative therapy, a highly specific discrimination between fibroadenomas and other breast lesions is crucial. Phase-contrast imaging offers improved soft-tissue contrast and differentiability of fine structures combined with the potential of 3-dimensional imaging. In this study we assessed the potential of grating-based phase-contrast CT imaging for visualizing diagnostically relevant features of fibroadenomas. Materials and Methods: Grating-based phase-contrast CT was performed on six ex-vivo formalin-fixed breast specimens containing a fibroadenoma and three samples containing benign changes that resemble fibroadenomas using Talbot Lau interferometry and a polychromatic X-ray source. Phase-contrast and simultaneously acquired absorption-based 3D-datasets were manually matched with corresponding histological slices. The visibility of diagnostically valuable features was assessed in comparison with histology as the gold-standard. Results: In all cases, matching of grating-based phase-contrast CT images and histology was successfully completed. Grating-based phase-contrast CT showed greatly improved differentiation of fine structures and provided accurate depiction of strands of fibrous tissue within the fibroadenomas as well as of the diagnostically valuable dilated, branched ductuli of the fibroadenomas. A clear demarcation of tumor boundaries in all cases was provided by phase- but not absorption-contrast CT. Conclusions: Pending successful translation of the technology to a clinical setting and considerable reduction of the required dose, the data presented here suggest that grating-based phase- contrast CT may be used as a supplementary non-invasive diagnostic tool in breast diagnostics. Phase-contrast CT may thus contribute to the reduction of false positive findings and reduce the recall and core biopsy rate in population-based screening. Phase-contrast CT may further be used to assist during histopathological workup, offering a 3D view of the tumor and helping to identify diagnostically valuable tissue sections within large tumors

    Turning the Table: Plants Consume Microbes as a Source of Nutrients

    Get PDF
    Interactions between plants and microbes in soil, the final frontier of ecology, determine the availability of nutrients to plants and thereby primary production of terrestrial ecosystems. Nutrient cycling in soils is considered a battle between autotrophs and heterotrophs in which the latter usually outcompete the former, although recent studies have questioned the unconditional reign of microbes on nutrient cycles and the plants' dependence on microbes for breakdown of organic matter. Here we present evidence indicative of a more active role of plants in nutrient cycling than currently considered. Using fluorescent-labeled non-pathogenic and non-symbiotic strains of a bacterium and a fungus (Escherichia coli and Saccharomyces cerevisiae, respectively), we demonstrate that microbes enter root cells and are subsequently digested to release nitrogen that is used in shoots. Extensive modifications of root cell walls, as substantiated by cell wall outgrowth and induction of genes encoding cell wall synthesizing, loosening and degrading enzymes, may facilitate the uptake of microbes into root cells. Our study provides further evidence that the autotrophy of plants has a heterotrophic constituent which could explain the presence of root-inhabiting microbes of unknown ecological function. Our discovery has implications for soil ecology and applications including future sustainable agriculture with efficient nutrient cycles

    El Diario de Pontevedra : periĂłdico liberal: Ano XXXV NĂşmero 10124 - 1918 xaneiro 5

    Get PDF
    In resource-limited settings and in the military theater, fresh human whole blood is commonly transfused, but infectious risks are a concern. Sophisticated molecular testing for potential infectious agents in the whole blood is often unavailable. To address this unmet need, pathogen reduction technology (PRT) has been developed, and it is an effective approach to inactivate a broad range of pathogens found in human blood. However, studies are needed to determine if it is harmful to blood cells and whether these cells could damage the transfused recipient, including the development of acute lung injury/acute respiratory distress syndrome. In this study, we used a commercial PRT system to treat human whole blood that was then transfused into immunodeficient mice, and the development of acute lung injury was determined. In a model of transfusion-related acute lung injury (TRALI), BALB/c SCID mice developed more robust lung injury when challenged with a MHC Class I monoclonal antibody compared to BALB/c wild-type and NOD/SCID mice. Transfusion of control versus Mirasol PRT-treated whole blood (25% blood volume exchange) into BALB/c SCID mice did not produce lung injury at storage day 1. However, mild lung injury at storage days 14 and 21 was observed without significant differences in lung injury measurements between Mirasol PRT-treated and control groups. The mild storage-dependent acute lung injury correlated with trends for increased levels of cell-free hemoglobin that accumulated in both the control and Mirasol PRT-treated groups. Neutrophil extracellular traps were elevated in the plasma of BALB/c SCID mice in the monoclonal antibody TRALI model, but were not different in mice that received exchange transfusions. In conclusion, exchange transfusion of human whole blood into immunodeficient mice produces mild lung injury that is storage-dependent and not related to pathogen reduction treatment
    corecore