241 research outputs found
High-pressure ethanol oxidation and its interaction with NO
Ethanol has become a promising biofuel, widely used as a renewable fuel and gasoline additive. Describing the oxidation kinetics of ethanol with high accuracy is required for the development of future efficient combustion devices with lower pollutant emissions. The oxidation process of ethanol, from reducing to oxidizing conditions, and its pressure dependence (20, 40 and 60 bar) has been analyzed in the 500–1100 K temperature range, in a tubular flow reactor under well controlled conditions. The effect of the presence of NO has been also investigated. The experimental results have been interpreted in terms of a detailed chemical kinetic mechanism with the GADM mechanism (Glarborg P, Alzueta MU, Dam-Johansen K and Miller JA, 1998) as a base mechanism but updated, validated, extended by our research group with reactions added from the ethanol oxidation mechanism of Alzueta and Hernández (Alzueta MU and Hernández JM, 2002), and revised according to the present high-pressure conditions and the presence of NO. The final mechanism is able to reproduce the experimental trends observed on the reactants consumption and main products formation during the ethanol oxidation under the conditions studied in this work. The results show that the oxygen availability in the reactant mixture has an almost imperceptible effect on the temperature for the onset of ethanol consumption at a constant pressure, but this consumption is faster for the highest value of air excess ratio (¿) analyzed. Moreover, as the pressure becomes higher, the oxidation of ethanol starts at lower temperatures. The presence of NO promotes ethanol oxidation, due to the increased relevance of the interactions of CH3 radicals and NO2 (from the conversion of NO to NO2 at high pressures and in presence of O2) and the increased concentration of OH radicals from the interaction of NO2 and water
High pressure oxidation of dimethoxymethane
The oxidation of dimethoxymethane (DMM) has been studied under a wide range of temperatures (373-1073 K), pressures (20-60 bar) and air excess ratios (¿ = 0.7, 1 and 20), from both experimental and modeling points of view. Experimental results have been interpreted and analyzed in terms of a detailed gas-phase chemical kinetic mechanism for describing the DMM oxidation. The results show that the DMM oxidation regime for 20, 40 and 60 bar is very similar for both reducing and stoichiometric conditions. For oxidizing conditions, a plateau in the DMM, CO and CO2 concentration profiles as a function of the temperature can be observed. This zone seems to be associated with the peroxy intermediate, CH3OCH2O2, whose formation and consumption reactions appear to be important for the description of DMM conversion under high pressure and high oxygen concentration conditions
Gator: a low-background counting facility at the Gran Sasso Underground Laboratory
A low-background germanium spectrometer has been installed and is being
operated in an ultra-low background shield (the Gator facility) at the Gran
Sasso underground laboratory in Italy (LNGS). With an integrated rate of ~0.16
events/min in the energy range between 100-2700 keV, the background is
comparable to those of the world's most sensitive germanium detectors. After a
detailed description of the facility, its background sources as well as the
calibration and efficiency measurements are introduced. Two independent
analysis methods are described and compared using examples from selected sample
measurements. The Gator facility is used to screen materials for XENON, GERDA,
and in the context of next-generation astroparticle physics facilities such as
DARWIN.Comment: 14 pages, 6 figures, published versio
Methotrexate in Pediatric Osteosarcoma: Response and Toxicity in Relation to Genetic Polymorphisms and Dihydrofolate Reductase and Reduced Folate Carrier 1 Expression
To determine the influence of the genotype and the level of expression of different enzymes involved in folate metabolism on the response to and toxicity of high-dose methotrexate treatment in pediatric osteosarcomas.
STUDY DESIGN: DHFR and Reduced folate carrier 1 (RFC1) semiquantitative expression was analyzed in 34 primary and metastatic osteosarcoma tissues by real-time polymerase chain reaction. The following polymorphisms were also analyzed in peripheral blood from 96 children with osteosarcoma and 110 control subjects: C677T, A1298C (MTHFR), G80A (RFC1), A2756G (MTR), C1420T (SHMT), the 28bp-repeat polymorphism, and 1494del6 of the TYMS gene. Treatment toxicity was scored after each cycle according to criteria from the World Health Organization.
RESULTS: DHFR and RFC1 expression was lower in initial osteosarcoma biopsy specimens than in metastases (P = .024 and P = .041, respectively). RFC1 expression was moderately decreased in samples with poor histologic response to preoperative treatment (P = .053). Patients with osteosarcoma with G3/G4 hematologic toxicity were more frequently TT than CT/CC for C677T/MTHFR (P = .023) and GG for A2756G/MTR (P = .048 and P = .057 for gastrointestinal and hematologic toxicity, respectively).
CONCLUSIONS: The role of C677T/MTHFR and A2756G/MTR on chemotherapy-induced toxicity should be further investigated in pediatric osteosarcomas receiving high-dose methotrexate. Altered expression of DHFR and RFC1 is a feasible mechanism by which osteosarcoma cells become resistant to methotrexate
Spectroscopy of electron-induced fluorescence in organic liquidscintillators
Emission spectra of several organic liquid-scintillator mixtures which are relevant for the proposed LENA detector have been measured by exciting the medium with electrons of ∼10keV. The results are compared with spectra resulting from ultraviolet light excitation. Good agreement between spectra measured by both methods has been foun
Low energy neutrino astronomy with the large liquid scintillation detector LENA
The detection of low energy neutrinos in a large scintillation detector may
provide further important information on astrophysical processes as supernova
physics, solar physics and elementary particle physics as well as geophysics.
In this contribution, a new project for Low Energy Neutrino Astronomy (LENA)
consisting of a 50kt scintillation detector is presented.Comment: Proccedings of the International School of Nuclear Physics, Neutrinos
in Cosmology, in Astro, Particle and Nuclear Physics, Erice (SICILY) 16 - 24
Sept. 200
Qualification Tests of the R11410-21 Photomultiplier Tubes for the XENON1T Detector
The Hamamatsu R11410-21 photomultiplier tube is the photodetector of choice for the XENON1T dual-phase time projection chamber. The device has been optimized for a very low intrinsic radioactivity, a high quantum efficiency and a high sensitivity to single photon detection. A total of 248 tubes are currently operated in XENON1T, selected out of 321 tested units. In this article the procedures implemented to evaluate the large number of tubes prior to their installation in XENON1T are described. The parameter distributions for all tested tubes are shown, with an emphasis on those selected for XENON1T, of which the impact on the detector performance is discussed. All photomultipliers have been tested in a nitrogen atmosphere at cryogenic temperatures, with a subset of the tubes being tested in gaseous and liquid xenon, simulating their operating conditions in the dark matter detector. The performance and evaluation of the tubes in the different environments is reported and the criteria for rejection of PMTs are outlined and quantified
Optical Scattering Lengths in Large Liquid-Scintillator Neutrino Detectors
For liquid-scintillator neutrino detectors of kiloton scale, the transparency
of the organic solvent is of central importance. The present paper reports on
laboratory measurements of the optical scattering lengths of the organic
solvents PXE, LAB, and Dodecane which are under discussion for next-generation
experiments like SNO+, Hanohano, or LENA. Results comprise the wavelength range
from 415 to 440nm. The contributions from Rayleigh and Mie scattering as well
as from absorption/re-emission processes are discussed. Based on the present
results, LAB seems to be the preferred solvent for a large-volume detector.Comment: 9 pages, 3 figures, accepted for publication by Rev. Scient. Instr
Detection potential for the diffuse supernova neutrino background in the large liquid-scintillator detector LENA
The large-volume liquid-scintillator detector LENA (Low Energy Neutrino
Astronomy) will provide high-grade background discrimination and enable the
detection of diffuse supernova neutrinos (DSN) in an almost background-free
energy window from ~10 to 25 MeV. Within ten years of exposure, it will be
possible to derive significant constraints on both core-collapse supernova
models and the supernova rate in the near universe up to redshifts z<2.Comment: 11 pages, 8 figures. accepted for publication in Phys. Rev. D.
accepted for publication in Phys. Rev.
Effectiveness of gold nanorods of different sizes in photothermal therapy to eliminate melanoma and glioblastoma cells
Gold nanorods are the most commonly used nanoparticle in
photothermal therapy (PTT) due to their efficiency to convert the
light into heat. This study aimed to investigate the efficacy of gold
nanorods of different sizes (large and small) in eliminating two
types of cancer cells: glioblastoma and melanoma cells. After the
cytotoxic profiles of the nanoparticles were stablished, PTT was
applied to the melanoma and glioblastoma cells with a high
efficiency and mortality rate. Several methods were used to
evaluate the efficiency of PTT including fluorescence, confocal or
dark field microscopy, biochemical analysis, and flow cytometry.
To determine cell viability and the type of cell death triggered by
PTT, Calcein-propidium iodide, Annexin-V staining and
dehydrogenase activity assays were performed. Our findings
revealed that after PTT was applied to the cancer cells, the main
cell death was apoptosis. This is advantageous as the presence of
apoptotic cells can stimulate antitumoral immunity in vivo.
Considering the high efficacy of these gold nanorods in PTT,
large nanoparticles could be useful for biofunctionalization
purposes. Large nanorods offer a greater surface area for
attaching biomolecules, thereby promoting high sensitivity and
specificity in recognizing target cancer cells. Additionally, large
nanoparticles could also be beneficial for theragnostic
applications, involving both therapy and diagnosis, due to their
superior detection sensitivity
- …