90 research outputs found

    Eosinophil-Mediated Immune Control of Adult Filarial Nematode Infection Can Proceed in the Absence of IL-4 Receptor Signaling

    Get PDF
    Helminth infections are accompanied by eosinophilia in parasitized tissues. Eosinophils are effectors of immunity to tissue helminths. We previously reported that in the context of experimental filarial nematode infection, optimum tissue eosinophil recruitment was coordinated by local macrophage populations following IL-4R–dependent in situ proliferation and alternative activation. However, in the current study, we identify that control of chronic adult filarial worm infection is evident in IL-4Ra–deficient (IL-4Ra2/2) mice, whereby the majority of infections do not achieve patency. An associated residual eosinophilia was apparent in infected IL-4Ra2/2 mice. By treating IL-4Ra2/2 mice serially with anti-CCR3 Ab or introducing a compound deficiency in CCR3 within IL-4Ra2/2 mice, residual eosinophilia was ablated, and susceptibility to chronic adult Brugia malayi infection was established, promoting a functional role for CCR3-dependent eosinophil influx in immune control in the absence of IL-4/IL13–dependent immune mechanisms. We investigated additional cytokine signals involved in residual eosinophilia in the absence IL-4Ra signaling and defined that IL-4Ra2/2/IL-52/2 double-knockout mice displayed significant eosinophil deficiency compared with IL-4Ra2/2 mice and were susceptible to chronic fecund adult filarial infections. Contrastingly, there was no evidence that either IL-4R–dependent or IL-4R–independent/CCR3/IL-5–dependent immunity influenced B. malayi microfilarial loads in the blood. Our data demonstrate multiplicity of Th2-cytokine control of eosinophil tissue recruitment during chronic filarial infection and that IL-4R–independent/IL-5– and CCR3-dependent pathways are sufficient to control filarial adult infection via an eosinophil-dependent effector response prior to patency

    Interpersonal Experiential Learning and Cancer Research Training Designed to Enhance the Motivation of Participating Interns Utilizing Self-Determination Theory: A Longitudinal Study with Photovoice Methodology

    Get PDF
    Historically, the underrepresentation of individuals from disadvantaged backgrounds, disabled, and diverse racial/ethnic groups in STEM fields is prevalent. Equity in stem fields allows for different perspectives and knowledge backgrounds allows for the cognitive diversity needed to tackle complex research topics. The Knight Scholars Program (KSP) aims to support underrepresented and disadvantaged high school and undergraduate students pursuing a research career by teaching them the tools they need to succeed. Spanning over three summers, KSP utilized the Self-Determination Theory (SDT) of motivation to create an inclusive learning environment and to strengthen the high schoolers\u27 motivation to pursue research careers focusing on the three physiological needs: autonomy, relatedness, and competency. Photovoices created by a cohort about their overall experiences during the two ten-week-long program segments underwent qualitative analysis to gauge the influences on scholars\u27 motivations present during their participation via qualitative analysis. These findings, discussed in the context of trainee recruitment and retention of individuals supporting diversity, equity, inclusion, and accessibility goals of programs, highlight the need for systematic support of trainees’ inherent needs for autonomy, relatedness, and competency

    A mouse infection model and long-term lymphatic endothelium co-culture system to evaluate drugs against adult Brugia malayi

    Get PDF
    The development of new drugs targeting adult-stage lymphatic filarial nematodes is hindered by the lack of a robust long-term in vitro culture model. Testing potential direct-acting and anti-Wolbachia therapeutic candidates against adult lymphatic filariae in vitro requires their propagation via chronic infection of gerbils. We evaluated Brugia malayi parasite burden data from male Mongolian gerbils compared with two immune-deficient mouse strains highly susceptible to B. malayi: CB.17 Severe-Combined Immmuno-Deficient (SCID) and interleukin-4 receptor alpha, interleukin-5 double knockout (IL-4Rα-/-IL-5-/-) mice. Adult worms generated in IL-4Rα-/-IL-5-/- mice were tested with different feeder cells (human embryonic kidney cells, human adult dermal lymphatic endothelial cells and human THP-1 monocyte differentiated macrophages) and comparative cell-free conditions to optimise and validate a long-term in vitro culture system. Cultured parasites were compared against those isolated from mice using motility scoring, metabolic viability assay (MTT), ex vivo microfilariae release assay and Wolbachia content by qPCR. A selected culture system was validated as a drug screen using reference anti-Wolbachia (doxycycline, ABBV-4083 / flubentylosin) or direct-acting compounds (flubendazole, suramin). BALB/c IL-4Rα-/-IL-5-/- or CB.17 SCID mice were superior to Mongolian gerbils in generating adult worms and supporting in vivo persistence for periods of up to 52 weeks. Adult females retrieved from BALB/c IL-4Rα-/-IL-5-/- mice could be cultured for up to 21 days in the presence of a lymphatic endothelial cell co-culture system with comparable motility, metabolic activity and Wolbachia titres to those maintained in vivo. Drug studies confirmed significant Wolbachia depletions or direct macrofilaricidal activities could be discerned when female B. malayi were cultured for 14 days. We therefore demonstrate a novel methodology to generate adult B. malayi in vivo and accurately evaluate drug efficacy ex vivo which may be adopted for drug screening with the dual benefit of reducing overall animal use and improving anti-filarial drug development

    NKp46+ natural killer cells develop an activated/memory-like phenotype and contribute to innate immunity against experimental filarial infection

    Get PDF
    Lymphatic filariasis and onchocerciasis are major neglected tropical diseases affecting over 90 million people worldwide with painful and profoundly disfiguring pathologies (such as lymphoedema or blindness). Type 2 inflammation is a hallmark of filarial nematode tissue infection and is implicated both in eosinophil dependent immunity and lymphatic or ocular immunopathologies. Type-2 innate lymphoid cells (ILC2) are known to play an important role in the initiation of type 2 inflammation in helminth infection. We therefore tracked comparative IL-12Rβ2+ ILC1, ST2+ ILC2 and NKp46+ natural killer (NK) innate lymphoid cell population expansions during Brugia malayi experimental peritoneal filarial infections using either immunocompetent or immunodeficient mice. In immunocompetent BALB/c animals, NKp46+ NK cells rapidly expanded representing over 90% of the ILC population in the first week of infection, whereas, surprisingly, ST2+ ILC2 failed to expand. NKp46+ NK cell expansions were confirmed in RAG2 deficient mice lacking adaptive immunity. Ablation of the NKp46+ NK cell compartment in RAG2 common gamma chain (gc) mice led to increased susceptibility to chronic adult B. malayi infection. This data was recapitulated using an Onchocerca ochengi male worm peritoneal implant model. When NKp46+ NK cells were depleted in RAG2 deficient mice using anti-NKp46 or asialo GM1 antibody injections over the first five weeks of B. malayi infection, susceptibility to adult B. malayi infection was significantly increased by 2-3 fold with concomitant impairment in eosinophil or neutrophil recruitments. Finally, we demonstrate that in RAG2 deficient mice, drug clearance of a primary adult B. malayi infection followed by challenge infection leads to resistance against early larval B. malayi establishment. This innate resistance is associated with bolstered NK and eosinophils whereby NKp46+ NK cells express markers of memory-like/enhanced activation (increased expression of interferon gamma and Ly6C). Our data promotes a novel functional role for NKp46+ NK cells in immunoprotection against experimental primary and secondary filarial infection which can proceed in the absence of adaptive immune regulation

    Structural Requirements for Dihydrobenzoxazepinone Anthelmintics:Actions against Medically Important and Model Parasites: Trichuris muris, Brugia malayi, Heligmosomoides polygyrus, and Schistosoma mansoni

    Get PDF
    Nine hundred million people are infected with the soil-transmitted helminths Ascaris lumbricoides (roundworm), hookworm, and Trichuris trichiura (whipworm). However, low single-dose cure rates of the benzimidazole drugs, the mainstay of preventative chemotherapy for whipworm, together with parasite drug resistance, mean that current approaches may not be able to eliminate morbidity from trichuriasis. We are seeking to develop new anthelmintic drugs specifically with activity against whipworm as a priority and previously identified a hit series of dihydrobenzoxazepinone (DHB) compounds that block motility of ex vivo Trichuris muris. Here, we report a systematic investigation of the structure–activity relationship of the anthelmintic activity of DHB compounds. We synthesized 47 analogues, which allowed us to define features of the molecules essential for anthelmintic action as well as broadening the chemotype by identification of dihydrobenzoquinolinones (DBQs) with anthelmintic activity. We investigated the activity of these compounds against other parasitic nematodes, identifying DHB compounds with activity against Brugia malayi and Heligmosomoides polygyrus. We also demonstrated activity of DHB compounds against the trematode Schistosoma mansoni, a parasite that causes schistosomiasis. These results demonstrate the potential of DHB and DBQ compounds for further development as broad-spectrum anthelmintics

    Tetracyclines improve experimental lymphatic filariasis pathology by disrupting interleukin-4 receptor-mediated lymphangiogenesis

    Get PDF
    Lymphatic filariasis is the major global cause of nonhereditary lymphedema. We demonstrate that the filarial nematode Brugia malayi induced lymphatic remodeling and impaired lymphatic drainage following parasitism of limb lymphatics in a mouse model. Lymphatic insufficiency was associated with elevated circulating lymphangiogenic mediators, including vascular endothelial growth factor C. Lymphatic insufficiency was dependent on type 2 adaptive immunity, the interleukin-4 receptor, and recruitment of C-C chemokine receptor-2–positive monocytes and alternatively activated macrophages with a prolymphangiogenic phenotype. Oral treatments with second-generation tetracyclines improved lymphatic function, while other classes of antibiotic had no significant effect. Second-generation tetracyclines directly targeted lymphatic endothelial cell proliferation and modified type 2 prolymphangiogenic macrophage development. Doxycycline treatment impeded monocyte recruitment, inhibited polarization of alternatively activated macrophages, and suppressed T cell adaptive immune responses following infection. Our results determine a mechanism of action for the antimorbidity effects of doxycycline in filariasis and support clinical evaluation of second-generation tetracyclines as affordable, safe therapeutics for lymphedemas of chronic inflammatory origin

    Sequential Infection with Influenza A Virus Followed by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Leads to More Severe Disease and Encephalitis in a Mouse Model of COVID-19

    Get PDF
    COVID-19 is a spectrum of clinical symptoms in humans caused by infection with SARS-CoV-2. The coalescence of SARS-CoV-2 with seasonal respiratory viruses, particularly influenza viruses, is a global health concern. To understand this, transgenic mice expressing the human ACE2 receptor (K18-hACE2) were infected with influenza A virus (IAV) followed by SARS-CoV-2 and the host response and effect on virus biology was compared to K18-hACE2 mice infected with IAV or SARS-CoV-2 alone. The sequentially infected mice showed reduced SARS-CoV-2 RNA synthesis, yet exhibited more rapid weight loss, more severe lung damage and a prolongation of the innate response compared to the singly infected or control mice. Sequential infection also exacerbated the extrapulmonary encephalitic manifestations associated with SARS-CoV-2 infection. Conversely, prior infection with a commercially available, multivalent live-attenuated influenza vaccine (Fluenz Tetra) elicited the same reduction in SARS-CoV-2 RNA synthesis, albeit without the associated increase in disease severity. This suggests that the innate immune response stimulated by IAV inhibits SARS-CoV-2. Interestingly, infection with an attenuated, apathogenic influenza vaccine does not result in an aberrant immune response and enhanced disease severity. Taken together, the data suggest coinfection (‘twinfection’) is deleterious and mitigation steps should be instituted as part of the comprehensive public health and management strategy of COVID-19
    corecore