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Abstract 

Filarial helminths are vector-borne, tissue-dwelling parasitic worms that cause the neglected 

tropical diseases: lymphatic filariasis, onchocerciasis, loiasis and mansonellosis in humans, 

and dirofilariasis in cats and dogs. Drugs that are deployed through mass drug administration 

programs (human filariasis) or prophylactic treatments (dirofilariasis), target only the 

transmissible (microfilariae; mf), or early larval (L3-L4) stages of disease. They exert little 

effect on adult worms, which can survive and reproduce for >10 years. There is also a risk of 

severe adverse events to standard anti-filarial drugs and resistance has been reported in 

both humans and animals. There is, therefore, an urgent, unmet need for drugs able to safely 

target adult stage parasites (macrofilaricides). For macrofilaricide candidates to be tested, 

there is a heavy reliance on in vivo models due to technical difficulties in maintaining target 

human/animal filarial viability in vitro. Substantial animal use is currently required due to 

intra-group variability and single end-point analysis.  

The work conducted in this thesis presents the development of alternative drug models to 

refine, reduce and replace animal usage for anti-filarial drug testing. Specific culture media 

conditions and co-cultures with mammalian cell lines were assessed to support the in vitro 

development of Brugia malayi or Dirofilaria immitis larvae from infective stages derived from 

Aedes aegypti mosquitoes for up to five weeks. Inbred immunodeficient mouse strains were 

evaluated as a superior in vivo model compared with outbred Meriones gerbils for the long-

term (>25 week) maintenance of B. malayi adult infections. Three week in vitro co-cultures, 

using human lymphatic endothelial cell primary cell bilayers, have been evaluated to 

maintain B. malayi parasite survival and intra-nematode Wolbachia symbiont titres 

comparable to those in vivo. This in vitro system has been validated to screen anti-Wolbachia 

and direct nematodicidal drugs over a two-week time course. Novel in vivo bio-imaging 

technologies: ultrasonography (USG) and fluorescent intravital bioimaging have been 
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scrutinized for the ability to track accurate filarial infection biomass and treatment 

responses. USG has been validated as a minimally-invasive procedure to diagnose active 

adult infections, estimate adult parasite burdens and track macrofilaricidal drug activity 

longitudinally. Considering overall animal use, adoption of these innovations may reduce 

animal use by >50% in testing macrofilaricidal drugs and simultaneously refine in vivo 

procedures by obviating the use of surgical implantations of adult parasites. 
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1.1. Helminths as a neglected tropical disease 

Neglected tropical diseases (NTDs) are a group of 20 disabling conditions amongst the 

world’s poorest populations (Hotez, 2007b), termed so to highlight the severe lack of funding 

received in contrast to ‘the big three’; tuberculosis, HIV/AIDs and malaria (Molyneux, 2004). 

Helminth (worm) infections constitute a part of this NTD list, primarily in the form of soil-

transmitted helminths (STH), consisting of Ascaris lumbricoides, Trichuris trichiura and 

hookworm roundworm species (Ancylostoma duodenale and Necator americanus), in which 

an estimated 24% of the world’s population are infected; schistosomiasis, caused by the 

genus, Schistosoma, a flatworm species which infect over 200 million people; food-borne 

trematodes, including Chinese liver-flukes, lung flukes and liver-flukes; cestodes, which are 

flat tapeworms often causing disease upon ingestion of eggs; guinea-worm, which causes 

infection upon ingestion of water containing infected water fleas; and finally, filarial 

nematodes, which are mosquito-borne and responsible for lymphatic filariasis (LF), 

onchocerciasis and loiasis, infecting over 120 million individuals with 856 million people at 

risk (WHO report, 2018). 

Neglected tropical diseases account for approximately 26.06 million disability-adjusted life 

years (DALYs) globally (James et al., 2018). In addition to clinical disease, NTDs further impact 

the poorer populations of the world, with individuals of the ‘bottom billion’, the 1.4 billion 

people who live below the poverty level defined by the World Bank (Hotez, 2011), predicted 

to have at least one NTD, further inducing poverty through detriment to worker productivity 

and child development (Hotez, 2007a, Perera et al., 2007, Molyneux et al., 2018, Litt et al., 

2012). 

1.2. Filarial nematode parasites 

The Filariae, (family Onchoceridae; ONC) are a taxonomic grouping within the phylum, 

Nematoda (roundworms). According to recent detailed molecular taxonomic analysis, the 
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onchocercidae family is comprised of five distinct ‘clades’ (ONC1-5) which are parasitic in a 

diverse range of definitive hosts including amphibians, birds, mammals and reptiles 

(Lefoulon et al., 2015). Of medical importance are the lymphatic filariae: Brugia malayi, B. 

timori and Wuchereria bancrofti, the subcutaneous dwelling Loa loa, Mansonella ozzardi, M. 

streptocerca and Onchocerca volvulus and the intra-peritoneal parasite, M. perstans. In 

addition, Dirofilaria immitis and D. repens, which are filarial parasites of veterinary 

importance in cats and dogs, can also cause arrested zoonotic human infections and 

pathology. Although not of medical/veterinary importance, the rodent filariae, 

Acanthocheilonema viteae and Litomosoides sigmodontis, as well as the cat filaria, B. 

pahangi, are often used in research as representative surrogate species that can be 

maintained in the laboratory. In addition, due to the historical lack of suitable laboratory 

models of Onchocerca, natural cattle infections of the closely related ONC 3 clade parasites: 

Onchocerca gutterosa, O. lienalis and O. ochengi are often used in research. 

A feature common to all filariae is the requirement of an obligate period of larval 

development in an arthropod intermediate host. These arthropods, including blood feeding 

flies, mites, midges, mosquitoes and ticks, act as transmission vectors by transferring 

infections between definitive hosts. As such, filariases are considered as ‘vector-borne’ 

diseases and competent vector species ecology and habitat dictate the epidemiological 

patterns of each individual filarial parasitic infection. Table 1.1 summarises the vector and 

definitive hosts of filariae of medical and veterinary importance, including species used in 

medical research. 

1.3. General Filarial Life Cycle 

Filarial nematodes have a complex, biphasic life cycle involving both a blood feeding 

arthropod vector and a mammalian definitive host (Table 1.1). Female vector species 

becomes infected upon taking a blood meal from an infected definitive host and ingesting 
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microscopic microfilariae (mf), typically 200 M in length and 5M in diameter. For certain 

filariae, mf are encased within a remnant nematode egg shell, known as a ‘sheath’. During 

the initial penetration out of the arthropod midgut, mf ‘ex-sheath’ to form the first-stage 

“L1” larvae. L1 initiate a migration route through various tissues and body cavities of the 

vector, the route and timings of which are specific to each filarial-vector relationship. During 

this period, vector-stage filarial larvae undergo two moults whereby the outer cuticle is shed 

to allow a period of growth within the vector, from L1-L2 and from L2 to infective larvae (iL3). 

The iL3 (0.5-1mm in length) are positioned in the head and mouthparts, poised to infect a 

definitive host when parous vectors take a second blood meal. The rate of development 

within the vector is dependent on temperature, known as the ‘extrinsic incubation period’ 

and usually requires average temperatures to remain at or above 14-20 degrees centigrade 

for iL3 development to be achievable over a period of 2-3 weeks, coincident with the vector’s 

feeding interval. Upon initial infection through the bite site, it is thought that all filarial L3, 

independent of species, initially parasitise the lymphatic system to migrate and evade 

immune-dependent destruction in the skin. Lymphatic filariae remain resident within the 

lymphatics, whilst subcutaneous filariae emerge to infect sub-cutaneous tissues. Larvae 

undergo two further moults and develop through the L4 (initially 1.5-2mm) and L5 (immature 

adult stage, 1-2cm approx.) within these niches. A further pre-patent incubation period is 

necessary before adults are sexually mature. This coincides with a sustained period of growth 

from the micro- to macroscopic where adult females attain lengths of between 5-20 cm. 

Adult males are typically shorter and more slender, reflecting the fact that females contain 

pairs of uteri extending almost the full length of their bodies. Adult worms can reside in the 

lymphatics or subcutaneous tissues for >12 years. When the adult worms mate they produce 

mf, their microscopic progeny, to disseminate either in the circulation or skin. Thus, the 

infection is transmitted and the life cycle is completed when a competent blood feeding 

vector takes a blood meal. 
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Table 1.1 Definitive and intermediate vector hosts of medically and veterinary-important 

filarial species including rodent filariae used in research 

Filarial Species (Clade) Vector Major 
host  

Other hosts Laboratory life cycle 
host 

Acanthocheilonema 
viteae (ONC 4) 

Ornithodoros 
ticks 

Rodents - Gerbils 

Brugia malayi (ONC 5) Anopheles, 
Mansonia 
mosquitoes 

Humans 
 

Civet cats, 
Domestic cats, 
Dogs, 
Leaf monkey 

Gerbils 
Mice 
(immunodeficient) 

Brugia timori (ONC 5) Anopheles,  
Mansonia 
mosquitoes 

Humans - none 

Brugia pahangi (ONC 5) Mansonia 
mosquitoes 

 Civet cats, 
Domestic cats, 
Dogs 

Ferrets, 
Gerbils, 
Mice, 
Rats 

Dirofilaria immitis 
(ONC 3) 

Aedes 
Anopheles 
Culex 
mosquitoes 

Dogs 
 

Cats, 
Ferrets, 
Foxes & other 
wild canids 
Humans 
(arrested) 

none 

Dirofilaria repens (ONC 
3) 

Aedes 
Anopheles 
Culex 
mosquitoes 

Dogs 
 

Cats, 
Foxes & other 
wild canids 
Humans 
(arrested) 

none 

Onchocerca gutterosa 
(ONC 3) 

Simulium 
blackflies 

Cows - none 

Onchocerca lienalis 
(ONC 3) 

Simulium 
blackflies 

Cows - none 

Onchocerca ochengi 
(ONC 3) 

Simulium 
blackflies 

Cows - none 

Onchocerca volvulus 
(ONC 3) 

Simulium 
blackflies 

Humans - Chimpanzees 

Loa loa (ONC 5) Chrysops tabinid 
flies 

Humans Drills Baboons 
(splenectomised) 
Mice 
(immunodeficient) 

Litomosoides 
sigmodontis (ONC 4) 

Ornithonyssus 
mites 

Cotton 
rats 

- Gerbils, 
Mice 

Mansonella ozzardi 
(ONC 5) 

Culicoides 
midges 

Humans Monkeys none 

Mansonella perstans 
(ONC 5) 

Culicoides 
midges 

Humans Monkeys none 

Mansonella 
streptocerca (ONC 5) 

Culicoides 
midges 

Humans Chimpanzees none 

Wuchereria bancrofti 
(ONC 5) 

Aedes, 
Anopheles,  
Culex, 
mosquitoes 

Humans - none 

Adapted from (Nanduri and Kazura, 1989, Philipp et al., 1984)
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1.4. Lymphatic Filariasis 

Lymphatic filariasis (LF) is distributed in South America, Africa, Southeast Asia and The Pacific 

(Taylor et al., 2010b, Molyneux et al., 2003) (Figure 1.1). When assessed in 2000, an 

estimated 120 million individuals in 73 endemic countries were infected, with a total 

population of 1.3 billion at risk of acquiring infection 

(https://www.who.int/lymphatic_filariasis/global_progress/en/). Due to elimination 

programmes, in 2014, the number of estimated cases had reduced to 63 million (Ramaiah 

and Ottesen, 2014). W. bancrofti is the main etiological agent of lymphatic filariasis (LF), 

responsible for approximately 90% of cases. W. bancrofti has the widest distribution of all LF 

parasites due to the broad range of mosquito vectors that can transmit infection. It has high 

prevalence in Sub-Saharan Africa, south and southwest Asia, and was introduced to countries 

in the Caribbean and Latin America with the slave trade (Michael and Bundy, 1997). Brugia 

malayi and B. timori, transmitted predominantly by Mansonia mosquitoes, constitutes a 

further 10% of cases in tropical regions of South and Southeast Asia and co-infection with W. 

bancrofti prevails in southern India (Michael and Bundy, 1997). B. timori, constitutes the 

remainder of LF cases and has the most restricted geographic range of all filarial species, with 

prevalence only in Indonesia and Timor-Leste (McNulty et al., 2013). 

 

https://www.who.int/lymphatic_filariasis/global_progress/en/
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Figure 1.1. Distribution of lymphatic filariasis and status of preventative chemotherapy in endemic 

countries in 2017 

Image from: http://apps.who.int/neglected_diseases/ntddata/lf/lf.html The PCT/MDA status for each country (indicated by the 

colour key), is a simplification of the overall country status of lymphatic filariasis highlighting endemic regions and where 

preventative chemotherapy is conducted, however this does not represent the heterogeneity in the focal distribution of the 

disease within the country. 

 

1.5. Lymphatic filariasis specific life cycle 

Both Brugia spp. and W. bancrofti are transmitted by female mosquitoes and, in optimum 

temperature conditions, iL3 can develop 13 days after blood feeding (Figure 1.2). LF species 

are some of the more rapid growing filarial species, attaining sexual maturity in the lymphatic 

system as little as twelve weeks following initial infection (Ash and Riley, 1970, Ash, 1973). 

In experimental models, the B. malayi L3-L4 moult occurs at 7-9 days and the L4-L5 moult at 

28-35 days after initial infection (Ash and Riley). Adult B. malayi are approximately 3-5 cm in 

length whilst W. bancrofti are typically larger, reaching 7-10 cm. Adults demonstrate a 

proclivity for the limb and groin lymphatics, including the supra-testicular lymphatics in the 
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case of W. bancrofti infections of male patients. Adults reside within ‘worm nests’; zones of 

grossly dilated lymphangions (lymphatic collecting vessels adjoined by lymphatic valves). The 

reproductive life-span of W. bancrofti is estimated at 5 years (Dreyer et al., 2005). Mating 

worms can produce >1000 sheathed mf per day. Mf migrate with lymph traffic to enter the 

blood stream via the thoracic duct. Mature mf can persist in the blood for 100-200 days. 

Most lymphatic filarial mf of B. malayi and W. bancofti display an oscillatory nocturnal 

periodicity in peripheral blood, peaking at 9pm-12am. Nocturnal periodic mf sequester in 

deeper cardiopulmonary vasculature during day light hours. This periodicity is aligned to the 

peak biting times of local mosquito vectors and thus certain strains of W. bancrofti in 

Polynesia display an inverted diurnal periodicity which is aligned to the local Aedes vector. 

Sub-periodic ‘zoophilic’ strains of B. malayi also exist which display a less pronounced 

nocturnal periodicity. Upon blood feeding, mf rapidly invade the peritrophic matrix and ex-

sheath to escape the bloodmeal within the mid-gut. The L1 stage forms a ‘sausage’ 

morphology within flight muscles before developing to L2 which then migrate to the head 

and proboscis undergoing a final moult to L3.  
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Figure 1.2. Life-cycle of Lymphatic Filariasis 

Image from: https://mectizan.org/news-resources/life-cycle-lymphatic-filariasis/ As a mosquito takes a blood meal, it deposits 

larvae onto the skin which then migrate through the bite wound. Larvae then migrate to the lymphatics where they continue 

to develop to adult worms, releasing microfilariae into the circulation. These microfilariae are then ingested by the mosquito 

when a blood meal is taken, develop through to larvae inside the mosquito which continues the life cycle when the mosquito 

takes another bloodmeal.  

 

1.6. Lymphatic filariasis disease 

The main disease symptoms of LF are forms of secondary lymphoedema: hydrocele and 

elephantiasis (Pfarr et al., 2009, Nutman, 2013)which combined, affect 40 million individuals 

worldwide, making LF a major cause of global disability. Hydrocele occurs in an estimated 25 

million male bancroftian filariasis patients (brugian filariasis does not induce this disease 

manifestation) and is due to impaired lymphatic drainage by parasitized supra-testicular 

lymphatics leading to fluid accumulation within the scrotum. Elephantiasis is a chronic 

https://mectizan.org/news-resources/life-cycle-lymphatic-filariasis/
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progressive form of limb lymphoedema affecting an estimated 15 million patients, mostly 

women. Developing larvae and adult filarial parasites induce lymphatic disease after 

infection of the lymphatic system. A main driver of pathology is the death of filariae in situ 

within lymphatics, either naturally or due to host non-permissive immune responses. Dreyer 

et al. (Dreyer et al., 2000) proposes multiple co-factors also contribute to the development 

of limb lymphoedema including secondary microbial infections of the skin. These secondary 

opportunistic infections can drive episodes of acute dermatolymphangioadenitis (ADLA) 

causing further inflammatory damage to the skin and superficial lymphatics. 

1.7. Onchocerciasis 

Onchcocerca volvulus, infects an estimated 37 million individuals, primarily in sub-Saharan 

Africa (James et al., 2018), although foci of infections still exist in Latin America and Yemen. 

Latin American foci are now limited to the Brazilian/Venezuelan Amazonian rainforest due 

to successful elimination programmes in Columbia, Ecuador, Guatemala and Mexico (World 

Health Organisation, 2018) (Figure 1.3).  
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Figure 1.3. Distribution of onchocerciasis and status of preventative chemotherapy in endemic 

countries in 2017  

 Image from: http://apps.who.int/neglected_diseases/ntddata/lf/lf.html  The PCT/MDA status for each country (indicated by 

the colour key), is a simplification of the overall country status for onchocerciasis, however this does not represent the 

heterogeneity in the focal distribution of the disease within the country. 

 

1.8. Onchocerciasis specific life cycle 

Blackfly of the genus, Simulium, transmit O. volvulus as well as other cattle Onchocerca 

parasites. Most of the Onchocerca life cycle biology in the definitive host has been 

ascertained from either in vitro cultures of larval O. volvulus, experimental infections of 

chimpanzees or using the related O. ochengi as a model via experimental infections of cattle 

(Abraham et al., 1993, Trees et al., 2000, Eberhard et al., 1995, Voronin et al., 2019, Duke, 

1980). Infectious stage (i)L3 (0.5 mm in length) penetrate the bite site and initially infect and 

migrate within lymphatics to emerge in the subcutaneous tissues where adult parasitism 

eventually establishes (Figure 1.4). The L3-L4 moult initiates rapidly, as little as 3 days post-

infection and is usually completed by day 7. From this point, O. volvulus are comparatively 

http://apps.who.int/neglected_diseases/ntddata/lf/lf.html
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slow growing, compared with lymphatic (ONC 5) parasites. The L4-L5 moult proceeds at 

approximately 2 months. It takes a further 280-532 days for adults to become patent and 

this coincides with a tremendous growth phase from <1 cm at the early L5 stage to 33 – 50 

cm mature female worms. Adult male worms measure 19-42 cm and are slenderer. Adult 

parasites form bundles which may reside in deeper subcutaneous tissues or in more 

superficial nodules (onchocercomata) which are vascularised collagen containing capsules 

rich in immune cell infiltrates. These often form adjacent to bony protrusions under the skin 

and are readily palpable as a clinical diagnostic feature. Adult parasites can live for an average 

of 8-10 years. Whilst female worms are sluggishly motile within these nodules, male worms 

are migratory and can move between onchocercomata to mate with different female worms. 

Mating produces 1000-3000 unsheathed mf per day. O. volvulus mf migrate into the skin and 

typically form gradient densities in the skin of the trunk, head or limbs related to distance 

from onchocercomata/adult worm bundles. The microfilarial stage can survive for upwards 

of one year in the skin. Blackfly acquire mf infection due to abrading skin to create a blood 

pool to fed upon. Onchocerca mf migrate from the midgut to flight muscles, form the sausage 

stage L1 and undergo two moults with migration to the proboscis in approximately 9 days. 

The IL3 burst out of the mouth parts during feeding to infect the next host. 
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Figure 1.4. Lifecycle of Onchocerciasis 

Figure from: http://blogs.biomedcentral.com/bugbitten/2015/09/11/good-news-mexico-river-blindness-eradication-

confirmed/  Blackfly takes a blood meal and L3 larvae enter the wound, develop through subcutaneous tissues to form adults 

in subcutaneous nodules, these adults produce unsheathed mf which can be found in the peripheral circulation, where they 

can be picked up by blackflies to continue the cycle.

 

1.9. Onchocerciasis disease 

Onchocerciasis is a spectrum of dermal and ocular diseases. All disease manifestations are 

induced by death of aged mf in the skin which induces inflammatory reactions to antigenic 

contents released as mf deteriorate. These reactions are typically allergic-type in nature 

http://blogs.biomedcentral.com/bugbitten/2015/09/11/good-news-mexico-river-blindness-eradication-confirmed/
http://blogs.biomedcentral.com/bugbitten/2015/09/11/good-news-mexico-river-blindness-eradication-confirmed/
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(including recruitment of eosinophil granulocytes and mast cell activation). Immune-

mediated inflammatory reactions cause ‘troublesome itching’ (Murdoch, 2018, Murdoch, 

2010). The incidence of troublesome itching precedes or co-occurs with the development of 

skin rashes known as acute and chronic papular onchodermatitis. More chronic exposure to 

mf infections in the skin give rise to other pathologies including lichenified onchodermatitis 

involving premature atrophy and fibrosis of the skin (lizard skin), hanging groin (a form of 

lymphoedema) and skin depigmentation (leopard skin). An estimated 6.5 million infected 

individuals suffer skin complaints (Murdoch, 2018). The most severe form of onchocerciasis 

is ocular keratitis (river blindness). Around 800,000 people are estimated to be blind or 

visually impaired due to ocular onchocerciasis, ranking river blindness the second leading 

cause of infection-induced blindness worldwide. As with dermal disease, ocular pathology is 

a result of entrapped disintegrating mf, mainly in the corneal tissue of the anterior ocular 

chamber. Dead mf can trigger granulocyte influx and degranulation causes collateral damage 

manifest as a punctate then sclerosing keratitis. Onchocerca volvulus mf can also occasionally 

migrate to the posterior segment of the eye. The presence of mf in this site occurs more 

frequently when skin infections are high. Death of mf at this anatomical location is 

particularly pathogenic as it can induce vascular leakiness and optic nerve damage 

(Pearlman, 1997, Pearlman and Hall, 2000, Hall and Pearlman, 1999). 

1.10. Dirofilariasis  

Dirofilariasis is caused by two veterinary filarial parasites; Dirofilaria immitis, the causative 

agent of heartworm disease in dogs and pulmonary dirofilariasis in cats, and D. repens, which 

causes a subcutaneous infection in cats and dogs (Simon et al., 2012). Both species can be 

transmitted to humans to cause zoonotic pathologies (Pampiglione et al., 1995, Jelinek et al., 

1996, Reddy, 2013). Dirofilaria immitis is distributed in the tropics and sub-tropics 

throughout the world whilst D. repens is absent from The Americas. Data is scant on 
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estimates of global prevalence or burden of disease in either companion animals or humans. 

Data are limited to areas of the world where dirofilariasis is highly prevalent and been 

recognised as both a veterinary and public health problem. As more epidemiological surveys 

have been carried out longitudinally, there is evidence that veterinary dirofilariasis is 

increasing in prevalence and distribution to erstwhile more temperate zones of USA and 

Northern Europe (Morchón et al., 2012) (Figure 1.5). This is speculated to be due to the 

effects of climate change providing extended habitats for local mosquito vector species and 

the potential for Dirofilaria larval development, at least during summer months. In the USA, 

the most intensively monitored country, prevalence of D. immitis ranges between 1-12% of 

surveyed dogs in mainland states. Regarding zoonotic human dirofilariasis, case study 

collections have documented a reported 1782 confirmed infections of which 372 are 

pulmonary and 1410 are subcutaneous/ocular (Simon et al., 2005, Simon et al., 2012). 

 
Figure 1.5. Incidence of heartworm 

Figure from: https://www.heartwormsociety.org/veterinary-resources/incidence-maps Incidence of heartworm in the USA 

between 2001 and 2016., marking the number of cases/clinic.  

https://www.heartwormsociety.org/veterinary-resources/incidence-maps
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1.11. Dirofilariasis specific life-cycle 

The major vector species of D. immitis in the USA is Aedes aegypti, although multiple species 

of Aedes, Anopheles, and Culex are competent vectors of D. immitis and D. repens. As with 

other filariae, an initial infection route via the skin lymphatics is suggested for Dirofilaria spp. 

Similar to other ONC 3 Onchocerca parasites, Dirofilaria initially establish in the sub-

cutaneous tissues and initiate moulting rapidly after 3-4 days. D. immitis continue to migrate 

from the subcutaneous tissues into striated muscle whereas D. repens remain in the sub-

cutaneous zone and form collagenous nodules, similar to Onchocerca spp. The L4-L5 moult 

proceeds at approximately two months. For D. immitis, the juvenile L5 stage migrates from 

muscle to invade the vasculature and establish in the pulmonary artery and right ventricle 

between 70-85 days post-infection. At this stage, the juvenile adults are 25-33mm in length 

(Figure 1.6). Upon infection of cardiopulmonary tissues a rapid growth phase is initiated 

whereby female worm length increases ~10-fold by the point of sexual maturity and mf 

production at ~6 months (slightly delayed in cats) whereby adult female worms can measure 

25-30 cm. Adult infections can persist for >5 years. Circulating, unsheathed mf acquire 

densities >1000/ml of peripheral blood, can persist in circulation for as long as two years and 

are transmitted to mosquitoes via blood feeding. Cats are rarely microfilaraemic for D. 

immitis but D. repens microfilaraemias do proceed in cats, making it a reservoir for 

transmission. Upon ingestion, mf penetrate the peritrophic membrane and migrate to the 

Malpighian tubules within 24 h. Moulting to L2 occurs within the Malpighian tubules at 8-10 

days and the L2-L3 moult occurs around 11-13 days, dependent on environmental 

temperature. L3 migrate to the head and mouthparts to complete the life cycle (Otto, 1969).  



CHAPTER 1 

37 

 
Figure 1.6. Lifecycle of veterinary heartworm  

Figure from: https://www.heartwormsociety.org/pet-owner-resources/2014-03-24-22-40-20 Infective larvae transfer to host 

via mosquito bite, these larvae then migrate through the subcutaneous tissues, eventually reaching the heart at the adult stage. 

These adults then begin to produce microfilariae, which are picked up when mosquitos take a bloodmeal, develop through to 

larvae within the mosquito, which can then enter another host when the mosquito bites again. 

 

1.12. Dirofilariasis disease 

Dirofilaria immitis adult infections of the heart are the cause of canine cardiopulmonary 

dirofilariasis (heartworm disease). In 2012, a recorded 48,000 dogs tested positive for 

heartworm disease in the USA (www.heartwormsociety.org). The presence of live adult 

worms in the pulmonary artery provokes a host pathological response triggering an 

enlargement and proliferation of the endothelial lining with collagen deposition. This leads 

to a narrowing of the artery (endarteritis) and along with chronic parasitism and high worm 

burdens can lead to hypertension and chronic congestive heart failure. Additionally, death 

https://www.heartwormsociety.org/pet-owner-resources/2014-03-24-22-40-20
http://www.heartwormsociety.org/
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of adult worms and bolus release of antigens into the lung can induce inflammatory 

thromboembolisms. Both conditions are potentially fatal. Cats are less permissive to chronic 

infections than dogs. This means that disease manifestations are typically acute and 

pulmonary in nature, coincident with the arrival of adults within the heart and with a high 

incidence of fatality. Humans are non-permissive hosts to D. immitis although 

microfilaraemias can establish in D. repens infections. Pathology is induced by migration and 

death of immature adult parasites in the lungs, for D. immitis, forming characteristic ‘coin-

shaped’ lesions which can be visualised by lung X-ray. For D. repens, sub-cutaneous or ocular 

inflammatory lesions are manifest (Jelinek et al., 1996). 

1.13. Wolbachia endosymbionts of filariae 

In the 1970s, an intracellular bacteria of filarial nematodes was discovered via electron 

microscopy (Kozek and Marroquin, 1977, Kozek, 1977). Researchers subsequently genetically 

characterised these obligate intracellular bacteria as the genus, Wolbachia, prior 

characterised to infect numerous insects and arachnids. Wolbachia are members of the 

Rickettsialaes order of -proteobacteria, closest related to Ehrlicia and Anaplasma species 

(Bandi et al., 1998). 

Wolbachia occurs in the medically- and veterinary-important filarial species: B. 

malayi/timori, D. immitis/repens, M. ozzardi/perstans, O. volvulus and W. bancrofti. Not all 

filariae possess Wolbachia and of note, the medically important L. loa is devoid of symbiosis 

(Büttner et al., 2003). Whilst all but O. flexuosa of the ONC3 clade thus far studied possess 

Wolbachia symbiosis, the proportion of aposymbiotic species in the ONC4 and ONC5 clades 

are higher, including the common filarial laboratory model organism, Acanthocheilonema 

viteae. Further, whilst Wolbachia has been observed in all wild isolates sampled of B. malayi, 

O. volvulus and W. bancrofti, a more inconsistent distribution may be apparent for M. 

perstans, with isolates identified with no evidence of Wolbachia infection (Casiraghi et al., 
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2001, Keiser et al., 2008, Coulibaly et al., 2009, Grobusch et al., 2003, McGarry et al., 2003) 

see Table 1.2. These patterns of Wolbachia presence and absence may represent a 

‘secondary loss’ of symbiosis. Certainly for A. viteae, L. loa and O. flexuosa, presence of 

Wolbachia insertions into filarial genomes is evidence of secondary loss events (Wu et al., 

2013). 

Molecular phylogenetic and whole genome analysis of Wolbachia in arthropods and 

nematodes demonstrates that Wolbachia comprise as many as eight distinct clades 

(Lefoulon et al., 2016). The arthropod Wolbachia clades A and B are more heterogeneous 

with more complex genomes and evidence of mobile genetic elements, whereas nematode 

Wolbachia clades C,D and F have smaller genomes and lack mobile DNA (Foster et al., 2005). 

Whilst it might be presumed that parasitic filariae acquired Wolbachia from their arthropod 

vectors, a recent hypothesis suggests clade C Wolbachia of ONC3 filariae, which 

demonstrates a high degree of co-evolution, may be the root ancestral source of original 

infection with Wolbachia which then latterly transferred to arthropods (Lefoulon et al., 

2016).  

Wolbachia is found within all life cycle stages of filariae, infecting the hypodermal cells of the 

lateral chords of both male and female worms as well as the female germline. Wolbachia are 

thus transmitted vertically from female filariae. An invasion event from somatic hypodermal 

tissues into the distal tip ovaries and germline cells occurs during L4 larval development 

(Landmann et al., 2012).  

From data derived from B. malayi, Wolbachia (clade D) undergo an exponential growth 

expansion during the early stages of mammalian infection. Infectious L3 stage harbour 

between 102-103 Wolbachia, determined by quantification of genomic DNA copies of the 

single copy Wolbachia gene, Wolbachia surface 39protein (wsp). This rapidly expands to >105 

Wolbachia in mid-L4 stages and >106 in juvenile adults. Wolbachia titres attain >107 in mature 
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adult female B. malayi. Titres are lower in males, reflecting both the smaller size of males vs 

females and Wolbachia invasion into the female germline.  

By tetracycline-mediated clearance of Wolbachia in experimental systems it has been shown 

that Wolbachia is required for both filarial larval development and embryogenesis. Thus, 

treatment of gerbils infected with Litomosoides sigmodontis or Brugia spp. with tetracyclines 

stunts L4 growth, prevents L4-L5 moulting and blocks adult filarial development (Bosshardt 

et al., 1993). Treatment at the pre-patent adult stage of infection in rodents effectively blocks 

embryogenesis and mf release (Halliday et al., 2014) whilst treatment at the patent-stage 

similarly blocks embryogenesis causing a gradual and complete loss of mf from the 

circulation (Hoerauf et al., 1999). Research into the nature of the symbiosis identifies that 

Wolbachia produce an excess of nucleotides and therefore may provide a source of 

nucleotides during rapid filarial cell division (Foster et al., 2005). Examination of biosynthetic 

pathway enzymes absent or incomplete from B. malayi but functional in Wolbachia, 

implicate haem and vitamin B2 (riboflavin) as products that endosymbionts may provide in 

more abundance than filariae can scavenge from their parasitic niche, especially at times of 

high growth demand (Li and Carlow, 2012). 
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Table 1.2. Wolbachia distributions and clades across filarial species. 

Adapted from (Lefoulon et al., 2016, Lefoulon et al., 2015, Bouchery et al., 2013) 

Filarial Species (Clade) Wolbachia presence/absence  Wolbachia clade 

Acanthocheilonema viteae (ONC 4) absent - 

Brugia malayi (ONC 5) present Clade D 

Brugia timori (ONC 5) Present Clade D 

Brugia pahangi (ONC 5) Present Clade D 

Dirofilaria immitis (ONC 3) Present Clade C 

Dirofilaria repens (ONC 3) Present Clade C 

Onchocerca gutterosa (ONC 3) Present Clade C 

Onchocerca lienalis (ONC 3) Present Clade C 

Onchocerca ochengi (ONC 3) Present Clade C 

Onchocerca volvulus (ONC 3) Present Clade C 

Loa loa (ONC 5) Absent - 

Litomosoides sigmodontis (ONC 4) Present Clade D 

Mansonella ozzardi (ONC 5) Present Clade F 

Mansonella perstans (ONC 5) Present Clade F 

Mansonella streptocerca (ONC 5) Currently unknown. No 
published data on the 
presence of Wolbachia 

Currently 
unknown. No 
published data on 
the presence of 
Wolbachia 

Wuchereria bancrofti (ONC 5) Present Clade D 

 

1.14. Registered anti-filarial drugs 

• Macrocyclic lactones 

The macrocyclic lactones (ML: avermectins and milbemycins) are derivatives of natural 

fermentation products of soil bacteria, Streptomyces such as S. avermitilis. Examples of 

avermectins are ivermectin and selamectin whilst milbemycin oxime and moxidectin are 

common milbemycins. Whilst originally developed for veterinary indications against gut 

nematodes, ML drugs have a range of activities against filarial parasites (Campbell, 1982, 

Wolstenholme et al., 2016, Nolan and Lok, 2012). Ivermectin (IVM; mectizan) has been used 

extensively in control and elimination mass drug administration (MDA) for both LF and 

onchocerciasis and was first introduced for human use in 1981. At the standard dose used of 
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single dose of 150-200 g/kg, IVM exerts a ‘microfilaricidal’ effect via agonistic targeting of 

the nematode glutamate-gated chloride channel (GluCl), and also gamma-aminobutyric acid 

(GABA) channels, inducing paralysis, loss from either the circulation of skin and subsequent 

destruction of mf via the lymphatics (Taylor et al., 2010b, Basanez et al., 2008, Brown et al., 

2000). IVM also affects late-stage, inter-uterine mf within adult female worms. This 

promotes a ‘long-tail’ of microfilaricidal activity whereby resumption of circulating or skin mf 

is absent for as long as six-months post-treatment. However, at this dose, there is no 

significant impact on adult worms, even following repetitive treatments. Whilst there are 

some treatment-associated side-effects caused by death of mf causing inflammatory 

reactions (known as Mazzotti reactions in the case of onchocerciasis) (Guderian et al., 1991, 

Basanez et al., 2008), these are generally well-tolerated and most pronounced in IVM-naïve 

populations where mf parasite loads are high. Because filarial mf tolerate IVM at doses in 

the physiological range in vitro without phenotypic changes, it has been suggested that part 

of mode-of-action requires a host immunological component. One hypothesis proposes that 

via impeding excretory/secretory apparatus within mf, reduced immunomodulatory 

molecule release allows for immune cell-dependent clearance (Moreno et al., 2010). 

However, IVM works with high efficacy in both immune intact and severe-combined 

immunodeficient mice (lacking adaptive immunity) which may implicate innate immune 

responses in the augmented activity of the drug in vivo (Halliday et al., 2014). 

Selective toxicity against IVM stems from a lack of GluCl channels in mammals and exclusion 

from the central nervous system by p-glycoprotein efflux pumps. With billions of treatments 

being administered in control and elimination campaigns, IVM is proven to be a safe 

microfilaricide in areas for LF or onchocerciasis. However, in areas co-endemic for loiasis, 

cases of severe adverse drug events (SAEs) have been reported (Gardon et al., 1997, 

Boussinesq et al., 2003). Severe adverse events are typified by neurological pathology, coma 

and in some instances, death. The severity of SAEs are positively correlated with increasing 

https://en.wikipedia.org/wiki/Gamma-aminobutyric_acid
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microfilarial density, with patients at a parasitaemia of 30,000 mf/ml having a greatly 

increased risk. Severe adverse events are due to the rapid death of microfilariae occluding 

the microvasculature in the brain exacerbated by inflammatory immune responses to the 

dying mf and mf invasion into the brain due to a damaged blood brain barrier (Gardon et al., 

1997), although the specific underlying mechanisms are not yet fully elucidated. Estimates 

between 2001 and 2002 reported 207 SAEs of which 65 were probable L. loa encephalopathy 

temporally related to IVM treatment (Boussinesq et al., 2003). IVM treatment of loa co-

infected individuals with lower mf parasitaemias between 8,000 – 20,000 mf/ml remain at 

risk of non-neurological symptoms in response to rapidly dying mf, which can be temporarily 

debilitating (Mackenzie et al., 2003, Aziz et al., 1982).  

Moxidectin (MOX), has recently shown superiority to IVM in phase III clinical trials. Compared 

to IVM, MOX sustains an absence of detectable mf from the skin of onchocerciasis patients 

for 12 months compared to 6 months (Awadzi et al., 2014, Opoku et al., 2018). Superiority 

stems from the drug’s increased lipophilicity creating a long-lasting depot in sub-cutaneous 

tissues. MOX was approved by the FDA in 2018 as new recommended treatment for 

onchocerciasis. Because the mode of action and kinetics of mf depletion are similar for MOX 

and IVM, the drug cannot be used as an alternative to IVM to treat L. loa co-infected patients.  

Both IVM and MOX, as well as other ML, are marketed prophylactic ‘preventatives’ for 

heartworm in client-owned cats and dogs. ML are efficacious in killing infectious L3 and 

developing L4 larvae and thus preventing the establishment of adult heartworm infections. 

IVM is given as a single monthly oral chewable tablet whereas MOX can be administered 

topically once every 3 months or as a slow-release injection once every 6 months.  

 Piperizines 

The piperizine derivative, diethylcarbamazine citrate (DEC), was first introduced as an anti-

filarial agent in 1947. It is primarily a microfilaricide although it does also have some 
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macrofilaricidal activity, mainly against juvenile developing adults. The mode-of-action and 

molecular target of DEC remains rather obscure. DEC is not active against mf in vitro pointing 

toward a host-directed mechanism. DEC modifies the metabolism of arachidonic acid and 

production of eicosanoids such as prostanoids and leukotrienes both secreted by B. malayi 

mf and mammalian host cells, including endothelium. Therefore, one theory proposes that 

DEC may induce vasoconstriction and immobilise bloodborne mf for immune-mediated 

targeting. This theory does not particularly address the potent microfilaricidal activity of DEC 

against skin-or ocular dwelling O. volvulus mf (Maizels and Denham, 1992).  

DEC was used as a front-line treatment for onchocerciasis until the early 1980s. At this point 

it was contra-indicated following an accumulation of case reports indicating the drug caused 

severe Mazzotti reactions, including irreversible ocular adverse reactions (Bird et al., 1979, 

Bird et al., 1980). Similarly, it can cause SAE in L. loa patients, similar to IVM, and is only 

suggested to be used as a treatment under careful clinical monitoring. DEC is used for the 

treatment of LF outside of Africa in MDA programmes. 

 Benzimidazoles 

Several benzimidazoles (BZ) are registered for human use and one, albendazole (ABZ), is 

frequently used as part of annual combination therapy for the treatment of LF with DEC 

and/or IVM at a single dose of 400 mg. ABZ acts as a pro-drug to the active metabolite, 

albendazole sulfoxide (ABZ-SOX). This metabolite then binds to the colchine sensitive site of 

-tubulin inhibiting microtubule assembly (Kwarteng et al., 2016). This perturbs cell division 

and cell transport such as glucose uptake, resulting in cell death due to the depletion of 

glycogen. ABZ-SOX therefore targets rapidly dividing cells with high energy demands. Whilst 

even multiple dose 400 mg ABZ is ineffective at killing adult filarial parasites, ABZ transiently 

blocks embryogenesis, leading to a gradual decline in mf. Selective toxicity stems from an 

amino acid substitution in mammalian tubulin rendering ~10-fold decreased binding of ABZ-
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SOX. Further, gut absorption of ABZ is low (approximately 10%), limiting systemic exposure 

of the drug. ABZ has also been used as a monotherapy for the treatment of loiasis, whereby 

21-day treatment with 400 mg can partially reduce circulating mf. Further, ABZ twice yearly 

MDA has been used as an alternative approach to IVM for the elimination of bancroftian 

filariasis where loiasis is co-endemic (Pion et al., 2017). 

Flubendazole (FBZ), is related BZ anthelmintic approved for the treatment of gastrointestinal 

helminths of human and veterinary importance in 1980 and is given to treat human gut 

worms via oral tablet (Geary et al., 2019). It was trialled for use as an anti-filarial drug against 

onchocerciasis in a clinical trial in Mexico in 1986 (Mackenzie and Geary, 2011). In this trial, 

FBZ demonstrated significant and selective macrofilaricidal activity (skin mf were not 

affected). However, FBZ was administered by injection to increase systemic exposure and 

caused severe adverse reactions at the injection site stopping the re-purposing of this drug 

via parenteral delivery.  

Mebendazole (MBZ), also within the BZ class, is an effective treatment against pinworms, 

roundworms, whipworms and hookworms through distribution in community-wide 

eradication programmes. Mebendazole exerts its action by preventing glucose absorption 

which are required for worm survival. Studies have been conducted to evaluate the efficacy 

of MBZ against filarial worms, for which it has shown efficacy against loa and mansonella 

microfilariae (Van Hoegaerden et al., 1987). Trials have also been carried out to examine its 

efficacy in bancroftian filariasis, however due to its poor enteric absorption high doses are 

required to be efficacious against microfilarial stages which induces gastrointestinal side 

effects (Sarma et al., 1988). 

 Melarsomine 

Melarsomine hydrochloride (immiticide), an aromatic organic arsenical, is the only approved 

treatment cure for adult dirofilariasis. It is given as an intramuscular injection. The mode of 
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action is not known. Melarsomine has low selective toxicity and induces adverse reactions 

around the injection site. Further, there is risk of severe treatment adverse reactions 

following drug-mediated death of parasites causing potentially fatal thromboembolisms. For 

these reasons melarsomine is delivered as split dose over an interval of 30 days. Further, 

prior to treatment initiation, dogs have to undergo a rigorous pre-assessment and high worm 

burdens (assessed by radiography or echo-cardiogram) may preclude treatment. Dogs need 

to be restricted from exercise over the course of treatment. Corticosteroid treatments may 

be administered to reduce inflammation during death of adult worms. Because of increased 

risk of thromboembolisms, melarsomine is not recommended for the treatment of feline 

dirofilariasis.  

1.15. Doxycycline 

Doxycycline (DOX) targeting Wolbachia leads to a range of anti-filarial outcomes assessed in 

phase II and III community trials. A 4-6 week, 100-200 mg/day treatment regimen has been 

confirmed to effectively and sustainably deplete Wolbachia (>90% depletion level) from 

filarial tissues in bancroftian filariasis, brugian filariasis and onchocerciasis patients (Taylor 

et al., 2005b, Debrah et al., 2007, Wanji et al., 2009). A putative bacteriostatic mode-of-

action is assumed via targeting the Wolbachia 30S ribosomal sub-unit, preventing protein 

synthesis. Effective Wolbachia depletions by long-course doxycycline leads to gradual 

waning of mf in blood and skin, long-term transmission - blocking sterility of adult worms 

and eventual significant macrofilaricidal activity (typically >70% macrofilaricidal 18-24 

months post treatment) (Walker et al., 2014). Further, DOX can improve lymphoedematous 

pathology in elephantiasis LF patients in a mode-of-action distinct to anti-Wolbachia or 

general antibiotic activities (Mand et al., 2012). Because DOX treatment is not directly 

microfilaricidal and also because L. loa lacks the symbiosis, DOX is safe to treat onchocerciasis 

or LF in L. loa co-infections (Turner et al., 2010a, Tamarozzi et al., 2011, Boussinesq et al., 
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2003). It has been approved by the WHO as an alternative strategy to IVM for the treatment 

of onchocerciasis. One drawback of DOX is the long treatment timeframe required to deplete 

Wolbachia levels to a level where they will not rebound. DOX is also not appropriate for use 

in children under the age of 8 years or pregnant women, due to its action as a calcium-

chelator which can hinder bone development during pregnancy and in young children (Jick 

et al., 1981, Czeizel and Rockenbauer, 2000, Cohlan et al., 1963) . For both these reasons, 

DOX is unsuitable for MDA but is proposed as a treatment option in specific test and treat 

elimination scenarios. Additionally, there is the concern that the use of broad-spectrum 

antibiotics may contribute to overall risk of antimicrobial resistance development 

(Sanprasert et al., 2010).  

DOX treatment has further proved to be effective in treating heartworm in infected dogs in 

combination with IVM (Bazzocchi et al., 2008). It is currently recommended to be used as an 

adjunct treatment for canine dirofilariasis to deplete Wolbachia and uterine contents prior 

to melarsomine treatment (Kramer et al., 2018). 

1.16. Human Filariasis control and elimination strategies 

Current strategies to control and eliminate human filarial disease focus on the blockade of 

the transmissible (mf) stage, as no safe, effective macrofilaricidal treatment deployable at 

scale is currently available. Elimination and disease control, in the case of onchocerciasis, is 

delivered through preventative chemotherapy (PCT) with the goal of reducing the circulating 

parasite density in the blood or skin of infected individuals, and thus the intensity of infection 

in communities to levels where transmission is no longer sustainable by the vector (Ottesen, 

1998). MDA functions on the basis that all at risk populations are treated with PCT regardless 

of infection state (Hooper et al., 2014). Prior to MDA, patients only received treatment on a 

‘test and treat’ basis, usually in response to symptoms (Boussinesq et al., 2018). Thus, 
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asymptomatic individuals persisted as a reservoir for disease and treatment was not 

delivered for long enough to be effective in reducing transmission. 

In 1974, the WHO launched the Onchocerciasis Control Program (OCP) in West Africa. As 

onchocerciasis prevalence is strongly correlated with the proximity of riverine breeding sites 

of the blackfly vector (Taylor et al., 2010b), the OCP exclusively employed vector control 

through the treatment of breeding sites with larvicides, in efforts to combat disease 

transmission (Boatin, 2008). The OCP incorporated MDA into their approach following the 

free donation of ivermectin by Merck in 1987 (Taylor et al., 2010a). Combined, the 

transmission cycle was interrupted 14 years after the initiation of the OCP (WHO, 2019). By 

the end of the OCP in 2002, 600,000 cases of blindness had been prevented and 18 million 

children were born free from the risk of disease or blindness resulting from onchocerciasis 

(WHO, 2018). Meanwhile, with some countries remaining endemic for onchocerciasis, the 

African Programme for Onchocerciasis Control (APOC) was launched in 1995 to cover areas 

in sub-Saharan Africa, which pioneered the use of community directed treatment with 

ivermectin (CDTI) (Boatin, 2008).The Onchocerciasis Elimination Program for the Americas 

(OEAP) was later implemented in 1993 to target Latin America, with strategic bi-annual 

delivery of ivermectin to cover 85% of affected communities (Kim et al., 2015).  

The WHO committed to the elimination of LF through the launch of the Global Programme 

to Eliminate Lymphatic Filariasis (GPELF) in 2000, following the declaration of LF as 

eradicable/potentially eradicable in 1997 (WHO 2014, 2015, 2018). This is the largest drug-

based elimination program ever attempted, with an estimated 4.4 billion treatments 

distributed across 56 endemic countries, to target elimination by 2020 (WHO 2014, 2015, 

2018). The programme owes its success to the donation of anthelmintic drugs from 

pharmaceutical companies, and the use of rapid diagnostic tests (RDT) to simplify LF 

detection to establish regions requiring MDA intervention (Ottesen, 1998). 3 phases 
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constitute the GPELF; the mapping of regions with active LF transmission, the blockade of 

transmission with annual rounds of MDA, and the verification that disease transmission does 

not recur. The program has proven success, with a 46% reduction in the number of people 

at risk of infection between 2000 and 2012. By the end of 2012, 46 countries had entered 

the post-MDA surveillance phase and to date, 15 countries have declared LF elimination 

(WHO, 2019).  

1.17. Mass Drug Administration regimens 

Due to the longevity of fecund adult worms, MDA is required annually or bi-annually for 5-6 

years (LF) or twelve years (onchocerciasis) with effective geographic coverage to ensure 

transmission is blocked, and microfilarial reservoirs do not rebound (Ottesen, 1998, Verver 

et al., 2018).  

Three drugs are used throughout the MDA programmes: IVM, donated by Merck; DEC, 

donated by Eisai; and ABZ, donated by GlaxoSmithKline (Tisch et al., 2005). IVM is the sole 

drug used in onchocerciasis programmes, whereas DEC or IVM in combination with ABZ are 

deployed through the LF programmes, dependent on areas of co-infection with 

onchocerciasis and/or loaisis.  

1.18. Research and development of new anti-filarial drugs 

There is renewed investment from major philanthropic agencies (e.g. Bill and Melinda Gates 

Foundation, Department for International Development) to support the development and 

implementation of new tools, including macrofilaricidal drugs, to target LF and 

onchocerciasis for elimination as a public health problem in line with the 2030 Sustainable 

Development Goals. New tools, including new drugs, are thought to be necessary to achieve 

global elimination of human filarial disease. Many specific, multi-factoral issues and caveats 

to achieving elimination with existing microfilaricide MDA include: development of IVM drug 

resistance (evidenced in onchocerciasis), loiasis SAE and the associated repercussions of 
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reduced community acceptability to MDA, ‘treatment fatigue’ to protracted MDA, especially 

after additional health benefits are no longer experienced, the breakdown of community 

drug distribution strategies, civil unrest, cross border issues and hard-to-reach communities 

(for instance, Yanomami Amazonian nomadic tribes) (Botto et al., 2016).  

For veterinary dirofilariasis, the emergence of ML resistance jeopardises the standard 

approach of ML-based prophylaxis (Wolstenholme et al., 2015, Bourguinat et al., 2017). 

Further, the side-effects associated with melarsomine and the lack of any indicated cure of 

feline heartworm disease means that new approaches are also urgently required in the 

control and treatment of dirofilariasis. 

1.19. Novel short-course macrofilaricides  

Strategies to develop new macrofilaricides generally falls into one of two approaches: 1) 

candidates that are directly toxic to filarial nematodes via targeting of filarial 

macromolecules and pathways or 2) candidates that target Wolbachia-specific essential 

gene products, emulating the sterilising activity of DOX. For both approaches, to be a solution 

to accelerating global elimination of LF and onchocerciasis, candidates need to fulfil a strict 

set of guidelines known as the macrofilaricide target candidate profile (TCP). Most criteria 

are, as with the development of any new chemical entity drug, related to safety toxicology, 

drug metabolism and pharmacokinetics. The macrofilaricide TCP also considers specific 

requirements for suitable deployment to achieve filarial elimination in resource poor 

settings. These include: oral (temperature stable) formulation, efficacy after ≤7 days 

treatment administration, a high >70% macrofilaricidal activity, avoidance of treatment-

associated inflammatory side effects and appropriate safety to administer in children and 

pregnant women (Bakowski and McNamara, 2019). 
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1.20. Direct-acting macrofilaricides 

The pharmacopeia of registered human drugs and specific veterinary anthelmintics have 

been evaluated pre-clinically. Potential ‘low-hanging fruits’ of drugs with pre-existing safety 

pharmacology data with activity against filariae in vivo and/or in vitro currently include: an 

oral reformulation of FBZ, oxfendazole, a veterinary BZ, which is the active metabolite of 

fenbendazole, auranofin, a rheumatoid arthritis drug, emodepside, a veterinary ion channel 

antagonist anthelmintic and imatinib (Glivec) an anti-cancer drug (Bulman et al., 2015, 

Fischer et al., 2019, Sjoberg et al., 2019, O'Connell et al., 2015). The oral formulation of FBZ 

has recently been discontinued due to poor efficacy and selective toxicity, whilst 

emodepside, oxfendazole and imatinib are currently entering phase II proof-of-concept trials 

as filarial indications.  

1.21. Novel anti-Wolbachia drugs 

The Anti-Wolbachia drug consortium (AWOL) was launched at the Liverpool School of 

Tropical Medicine in 2007, with the objective of developing an oral short-course drug 

specifically targeting Wolbachia. Formed as a consequence of the barriers encountered with 

doxycycline, the AWOL drug discovery programme aimed to find, or develop, drugs that 

specifically target Wolbachia, to initiate a slow, safe death of adult worms or permanent 

sterilisation, after one 7-day oral treatment regimen. Any potential candidates had to retain 

a high safety profile with onchocerciasis and L. loa co-infected individuals, in addition to 

being amenable in resource limited settings (Bakowski and McNamara, 2019). Over 2 million 

compounds from pharmaceutical diversity compound libraries have been screened against 

insect Wolbachia using high throughput technologies. For this, Aedes albopictus C6/36 cells 

naturally devoid of Wolbachia, were artificially infected with A. albopictus Wolbachia (wAlB) 

and exposed to chemical libraries for 9 days, before being qPCR processing to assess activity 
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against Wolbachia (Johnston et al., 2014). Despite screening the complete human 

pharmacopoeia, the process was time consuming, labour intensive and lacked throughput.  

To increase the screening throughput and capacity, the Operetta high-content automated 

imaging system was developed for use as screening platform (Clare et al., 2015). Here, 

Wolbachia infected C6/36 cells were incubated with compounds and SYTO11 viability dye for 

7 days and imaged using the Operetta to calculate the percentage reduction of Wolbachia 

infected cells. This allowed for potential hits to be identified using a ‘traffic light system’, 

whereby compounds reducing the number of Wolbachia infected cells by >90% were 

classified as potent hits (green), those reducing numbers by 50-90% considered moderate 

hits (amber) and those with no activity, or exhibiting toxicity, could be screened out (red). 

The throughput was further industrialised and automated in collaboration with Astra Zeneca, 

whereby whole 384 culture well plates could be scanned for Wolbachia specific fluorescence, 

simultaneously.  

At this point, promising candidates were then triaged for activity against nematode 

Wolbachia. Due to the lack of a robust in vitro model of the appropriate adult stage, studies 

were instead carried out on the more accessible mf stages, which are easier to maintain in 

culture. This allowed for candidates that could not penetrate the nematode cuticle to be 

blocked from further progression. Successful candidates at this stage were then progressed 

directly into in vivo pre-clinical proof-of-concept testing. 

As a result of A·WOL screening, several compounds have been identified with significant 

activity against Wolbachia. Some of these have been re-purposed antibiotics, for example 

minocycline, a derivative of doxycycline, which has shown superior activity at equivalent 

doses to doxycycline (Sharma et al., 2016) Rifampicin, an approved antibiotic in the 

treatment of tuberculosis (TB) has also been evaluated to have significant activity against 

Wolbachia, however only at high doses to achieve ideal drug exposure as determined 
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through pharmacokinetic-pharmacodynamic (PKPD) modelling studies (Aljayyoussi et al., 

2017), to achieve the necessary Wolbachia depletion over 7 days. Others have been 

developed through a rational medicinal chemistry approach starting from ‘hit’ clusters of 

related molecules identified in cell-based phenotypic screening (Johnston et al., 2017). Of 

these, AWZ1066S, based on an azaquinazoline scaffold, has been shown to achieve superior 

Wolbachia reductions in days of in vivo dosing (Hong et al., 2019). AWZ1066 has now entered 

formal preclinical development with first-in-human phase I testing scheduled for 2020. The 

most advanced discovery output from the AWOL programme has been the development of 

ABBV-4083 (‘TylAMac’). This is an analogue of the veterinary antibiotic drug Tylosin A, in 

which the chemical structure has been altered to improve oral bioavailability. TylAMac 

exhibits superior anti-Wolbachia activity in comparison to DOX and can reduce Wolbachia 

by between 90-99.9% based on 7-14 day dose regimens. TylAMac has been further successful 

in drug safety trials and is now currently in phase II clinical trials (Taylor et al., 2019, Hübner 

et al., 2019, von Geldern et al., 2019).  

The success of these compounds into the clinic necessitates scrutiny in phase I-III clinical 

trials. Due to this, several early-stage hits identified from screening are still undergoing early 

pre-clinical development to act as ‘back-ups’ and alternative treatments in the bid to 

eliminate filarial disease. Some of these back-ups may also be appropriate as veterinary 

Dirofilaria indications. 

1.22. In vitro filariasis culture systems and their use in drug 

screening 

Filarial in vitro cultures can be categorised as: 1. Growth cultures of filarial mammalian stage 

larvae, 2. adult filarial cultures and 3. mf-specific cultures. B. malayi, L. loa, M. perstans, O. 

volvulus and D. immitis can be cultured from the vector-stage L3 to undergo L3-L4 moulting 

with relatively high success (over 50% moulting rate) in relatively simple, serum 
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supplemented media (Lok et al., 1984b, Falcone et al., 1996, Abraham et al., 1987, Devaney, 

1985, Lok et al., 1984a, Zofou et al., 2018). The relative ease with which L3 can be cultured 

to grow and moult into L4 in vitro has been exploited in direct-acting nematodicidal drug 

screening studies (Gloeckner et al., 2010, Evans et al., 2013). Whilst applying drug testing to 

the L3-L4 stage is relevant for heartworm preventative drug discovery, they are less useful 

in discerning macrofilaricidal activities without necessary corroboration against adult stage 

parasites.  

Addition of mammalian cell lines into larval cultures (so called ‘feeder cell’ layers) can further 

support the onward development of L4 larvae, with records of successful development 

reported through to adult stages of B. malayi, M. perstans and O. volvulus. A variety of 

mammalian cell lines have been assessed including lines derived from kidney cells, 

fibroblasts, skeletal muscle cells, endothelial cells and leukocytes. However, the 

reproducibility of L3-adult filarial in vitro culture systems is debatable. Considering B. malayi, 

some of the first published studies in this area, (Riberu et al., 1990) used culture vessels with 

10% human serum in attempts to achieve the L3-L4 moult. It was concluded that by using 

this system, 85% of L3 larvae could reach the fecund adult stage. However, this has never 

been reproduced, presumably due to the variability and complexity of human serum which 

could provide different signals to initiate the moults depending on the donor. The donor 

source was never declared, speculating whether the serum was recovered from an infected 

individual, which could have significantly improved the developmental success due the 

genetic propensity amongst other factors. In 1994, different medium supplements were 

evaluated to enhance the moulting process (Smillie et al., 1994). L3 stage parasites were 

initially cultured in simple media (NCTC-135 + Iscove’s Dulbecco’s medium) with 10-15% of 

one of the following: Bovine Albumin Fraction, Foetal Bovine Serum, pooled human serum 

from hospital patients and finally, Human Serum collected from a single individual. The 

results suggested larvae cultured in human serum from a single individual, human serum 
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from hospital patients and FBS attempted the moult to L4 stage, however only cultures with 

serum from a single individual attempted a further moult. The study further showed that up 

to 28 days of culture, the larvae were comparable to that observed in jirds, however after 

this stage their development was incomparable. Furthermore, this study suggested that 

optimal growth and development of the parasites in vitro may be dependent on certain, 

unidentified components of human serum, similar to the Riberu study. In contrast to the 

work carried out by Riberu and Smillie, one group attempted co-culture with Human Dermal 

Fibroblasts and T-cell lines appeared to achieve a successful moult (69%) to the L4 stage with 

a further 2.6% progressing to the young adult stage (Falcone et al, 1995), suggesting cells of 

lymphoid origin – enriched where the parasites naturally reside – are beneficial in the 

moulting process. This is further evident in studies with O. volvulus (Voronin et al., 2019), 

whereby L3 moult to L4 with 30-60% success in the presence of peripheral blood 

mononuclear cell (PBMC) co-cultures. 

The most reliable in vitro systems applied in drug screening use isolated mf or adult parasites 

from either naturally or experimentally infected animal hosts. For macrofilaricidal drug 

development, testing against freshly derived ex vivo adult stages is most relevant, although 

large differences exist in the longevity of adults in culture, which may limit the ability to 

accurately assess potential macrofilaricidal effects of Wolbachia depleting agents and/or 

slow-acting drugs. One of the most successful examples of in vitro filarial culture is that of 

the bovine onchocerca parasite, Onchocerca gutturosa. Here, male O. gutturosa can survive 

for up to 6 months on a monkey kidney cell feeder layer This male adult Onchocerca culture 

system has been used to screen drugs, albeit with low throughput (Townson et al., 1987, 

Townson, 1988, Townson et al., 1986).  

Culture of female stage parasites has the advantage of examining embryotoxic treatment 

effects on the reproductive system. However, unlike male worms retrieved from cattle 
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Onchocerca, the culture of female stages is mainly limited to short-term experiments of 5 

days or less due to an inability to maintain female worms for long periods of time. In terms 

of brugian filariasis, the majority of adult cultures have focused on media-only systems, 

predominantly using RPMI with FBS, in which parasites are cultured between 24 and 120 

hours in order to evaluate the effects of rapid direct-acting macrofilaricides, nanoparticle 

formulations or gene expression (Marcellino et al., 2012, O’Neill et al., 2016, Ballesteros et 

al., 2016). Although these efforts have been seemingly effective, parameters evaluating ‘in 

vitro’ parasite fitness have centred around motility and survival assessments, which are often 

subjective to the investigator. In efforts to combat this subjectivity and to also increase the 

throughput of drug screens, imaging platforms and computer applications have been 

developed to automate this process and increase the reliability of scoring (Buckingham et 

al., 2014, Partridge et al., 2018, Marcellino et al., 2012, Storey et al., 2014). 

 To further incorporate quantitative assessments into analyses, some studies have employed 

biochemical readouts, such as the MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 

bromide (MTT assay) to assess parasite metabolic activity as an output of viability. This assay 

is dependent on the concept that in viable cells NAD(P)H-dependant cellular reductase 

enzymes are able to reduce the yellow tetrazolium MTT 3-(4,5-dimethylthiazol-2-yl)-2-5- 

diphenyltetrazolium dye to a purple formazan product, which can then be quantified using 

colorimetric plate readers, and can thus evaluate direct-acting drug activity (Comley et al., 

1989). 

Lacking from current in vitro systems, both adult and larval, is the evaluation into the stability 

of endosymbiont Wolbachia populations in cultured parasites. Additionally, in all systems 

scrutinised, comparison with an appropriate in vivo control has not been documented, 

raising uncertainties of the utility in drug screening experiments. For instance, current in vitro 

systems may be prone to a higher than desirable ‘false hit’ rate because viability of parasites 

and stress responses induced ex vivo may influence sensitivity to test compounds. For 

https://en.wikipedia.org/wiki/Di-
https://en.wikipedia.org/wiki/Methyl
https://en.wikipedia.org/wiki/Thiazole
https://en.wikipedia.org/wiki/Phenyl
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example, Geary et al (Ballesteros et al., 2016) described the dysregulation of several genes 

encoding stress indicators after retrieval from jirds, which remained over 5 days of in vitro 

culture. Furthermore, an induction of autophagy due to physiological stress may increase 

sensitivity to Wolbachia depletion, as filarial Wolbachia populations are known to be 

regulated by autophagic processes (Voronin et al., 2012). Combined, these phenomena can 

result in parasites that do not accurately replicate the physiological conditions at the 

infection site in a host and consequently, drug screening ‘hits’ identified through these in 

vitro systems may lead to failure of translation in in vivo studies due to artefactual 

sensitivities both to direct acting and anti-Wolbachia compounds in vitro. 

1.23. In vivo models of filariasis for drug screening 

Because there is currently no reliable culture system to generate adult filariae from 

infectious stage larvae at scale in vitro, animal models are heavily relied upon for drug 

efficacy testing. Such animal models are laborious, time consuming and slow the overall 

translation of preclinical candidates. 

Despite constituting only 10% of filarial infection cases, B. malayi is the most studied 

causative nematode of LF due to its ability to be maintained under laboratory conditions. 

Related filarial species naturally infecting animals; B. pahangi infecting cats, L. sigmodontis 

infecting cotton rats, and A. viteae infecting rodents, are also studied in vivo and serve as 

models to inform and predict human filariae research.  

Successful transmission of sub-periodic B. malayi and B. pahangi were initially confined 

exclusively to cats, a natural host, as well as dogs and three species of monkey; Macaca irus, 

M. nemestrina and M. rhesus (Denham and Fletcher, 1987, Edeson et al., 1960). These 

models however, were difficult to manage within a laboratory setting and unsuitable to 

maintain in large numbers for experimentation. As an alternative, filariae naturally 

permissive in rodents; L. sigmodontis, infecting cotton rats (Schneider et al., 1968), and A. 
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vitae, infecting gerbils, have been used as general filariae models to study the disease in a 

more facile manner. Additionally, the use of small rodents to establish human filariae have 

been explored, albeit with limited success. Initial models were developed to mimic a human 

infection, whereby parasites were injected into animals subcutaneously in attempts to reach 

the lymphatics. Although a larger rodent, B. malayi infection in ferrets (mustela putorius 

furo) have been determined to closely mirror that of humans, whereby adults are located 

primarily in the lymphatics, in addition to lower numbers in the heart and skin 5-8 months 

post-subcutaneous infection (Crandall et al., 1987, Crandall et al., 1982, Jackson-Thompson 

et al., 2018). Ferrets also develop pathologies, for example lymphangiectasia, 

lymphadenopathy and lymphatic obstruction, as observed in humans, and can hence serve 

as a suitable model to evaluate these in further detail. Experimentation into small rodent 

models was initially undertaken by Edenson and Warton in white mice and guinea pigs. 

However, infections failed to establish in all animals (Edeson et al., 1960). Rabbits also failed 

to establish Brugia infections in studies carried out by Ahmed et al, 1967 (Ahmed, 1967). 

Further attempts were conducted across an array of rodent species. Of these, golden 

hamsters developed patent infections with a 50% success rate (Malone and Thompson, 

1975), although only very low numbers of parasites were yielded from the heart alone. 

Infections of limited success were also observed in cotton rats, whereby earlier larval stages 

were retrieved from the skin and subcutaneous tissues, before migrating to the heart and 

pulmonary arteries in the latter stages of infection. Here, parasites were also evident in the 

lymph glands and testes, although failed to develop patency (Ramachandran and Pacheco, 

1965). Mastomys, multimammate rodents, represent a more successful model for Brugia 

infections. In M. coucha and M. natalenis, parasite tropism follows the same trajectory as 

previously described, with L3-L4 migrating through the subcutaneous tissue, before reaching 

the heart, lungs and testes at adult stage. On average, 11-21% of the initial inoculum develop 

are able to survive for up to 442 days post-infection, with up to 90% of this population 
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developing a stable patency (Sänger et al., 1981), however the persistence of this patency is 

highly variable. The best rodent model, and now the most widely accepted model of Brugia 

infection, is the Meriones unguilatus model, more commonly referred to as the Mongolian 

jird. In this model, adult parasites, of which up to 70% develop extended patency (Ash and 

Riley, 1970), primarily inhabit the lymphatic vasculature and spermatic cords, as well as 

residing in the heart and lungs. Infection is more profound in males than females, and thus 

this sex has been selected for the model.  

Despite being the best rodent model for lymphatic dwelling filariae infection, a prominent 

drawback prevails regarding parasite excision. Due to the subsequent residence of parasites 

in multiple tissues and organs, parasite retrieval proves challenging, particularly for efficacy 

testing, in which a high yield of parasites is required. To combat this issue, and thus increase 

the development of pre-clinical in vivo testing, intraperitoneal (IP) infections were conducted 

to confine parasites for more accurate, and facile recoveries in large numbers (McCall et al., 

1973, Mutafchiev et al., 2014). Intraperitoneal (ip) infections were trialled in both jirds and 

Mastomys species, with jirds retaining similar parasitaemias to that of subcutaneous (sc) 

infections, whereas ip infections failed in Mastomys.  

Another deficiency of the jird model is that reagents required for the identification of 

immunoglobins and other immune cell subsets are not readily available, as is also observed 

in the ferret model. Instead, these components are generally tailored to murine models. 

However filarial infections in immunocompetent mice have very limited success, and do not 

develop microfilariaemias (Nelson et al., 1991b). As an alternative, the severe-combined 

immunodeficient (SCID) mouse model was evaluated, following published research 

confirming brugian infection can be established in T-lymphocycte immunodeficient mutant 

nude mice. It was thus determined that the SCID mouse, lacking functional B- and T-

lymphocytes, allowed for the development of fully patent adults from L3 stage, both in 
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subcutaneous and intraperitoneal infections. This SCID model has since been validated for 

use as a pre-clinical model for in vivo drug efficacy studies (Halliday et al., 2014) with the goal 

to find a novel drug to treat the adult stage to accelerate filariasis elimination targets. 

The SCID mouse model has also proved successful in the subcutaneous implantation of the 

cattle Onchocerca, O. ochengi, for pre-clinical screening (Halliday et al., 2014). This was 

established due to a lack of facile models, and concerns over the translation of results 

conducted in the jird with Brugia to human clinical trials targeting O. volvulus. This was 

primarily due to differences in the parasite biology, which has hindered the development of 

macrofilaricides (Mackenzie and Geary, 2011, Awadzi, 2003). Prior to this, attempts of 

developing small rodent models of onchocerciasis were limited to larval stage implantations, 

whereby L3 stages were implanted under the skin within micro-chambers to achieve the 

moult to L4 stage, under the brief exposure of screening compounds (Taylor et al., 1994). 

The only other models supporting the full life cycle were in higher mammals, primarily in 

cattle and non-human primates (Eberhard et al., 1995, Morris et al., 2013, Trees et al., 2000). 

Higher mammals have also been heavily relied upon for L. loa parasite production and pre-

clinical studies. The naturally infected drill, Mandrillus leucophaeus, and splenectomised 

baboons as a surrogate, are the typical models of L. loa (Duke, 1980, Orihel and Eberhard, 

1985, Wanji et al., 2015, Wanji et al., 2017), although they carry a very low throughput and 

are difficult to maintain within a laboratory. Recently, a murine model has been developed 

using compound immunodeficient, lymphogenic mice lacking the common gamma-chain 

(c). Here, parasites develop into fecund adult infections from the subcutaneous infection of 

larval stages (Pionnier et al., 2019). Using the same model, researchers were also able to 

optimise and validate, using a reference microfilaricide, as a stage-specific (mf) system to 

screen any potential filarial candidates with having no activity against the L. loa mf stage, so 

as not to risk the induction of SADEs. 
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In terms of veterinary dirofilariasis, there are currently no rodent, or validated in vitro 

models, available and so experimentation is confined exclusively to laboratory infected cats 

and dogs. Experiments are therefore timely, highly expensive, and very low throughput. 

Welfare issues with experimentally infected dogs are also common, as parasite burdens in 

these laboratory maintained animals are usually >10-fold higher than those observed in 

naturally infected dogs (Chiara Lucchetti, personal communication, University of Parma, 

Italy). 

In conclusion, present development of new drugs targeting adult stages very heavily relies 

on the use of animals to determine drug effects at an early stage of the drug development 

process. Such animal models are laborious, time consuming and slow the overall translation 

of preclinical candidates. In the case of LF, a variety of small rodent models exist supporting 

adult development and long-term survival. In the case of onchocerciasis, only relatively 

short-term implantations of life cycle stages into rodents are routinely used in drug 

screening. For both onchocerciasis and loiasis, screening of novel therapeutics has 

traditionally relied on higher mammals. 

1.24. The 3Rs principles applied to anti-filarial drug discovery  

The National Centre for the Reduction, Refinement and Replacement of animals in scientific 

research (NC3Rs) focuses on performing more humane animal research by using methods 

which avoid or replace animal usage, minimise the numbers of animals used per experiment, 

and utilising approaches which minimise animal suffering and improve welfare. 

Many issues prevail concerning animal usage within anti-filarial drug screening. As discussed, 

the life-cycle is fully reliant on animal models; jirds for the life cycle maintenance for mf 

production for in vitro assays and mosquito feeds and jirds to generate adults for in vivo pre-

clinical screens.  
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Although the current screening pipeline utilises mf to determine drug activity against a whole 

nematode as opposed to an insect cell line alone, discrepancies in the translation to in vivo 

outcomes are apparent. Whilst testing compounds against mf or adult males is currently the 

only reliable means scrutinising long-term drug effects against filariae in vitro, and good for 

the prioritisation of candidates, they are not necessarily the most appropriate. Wolbachia 

titres are considerably lower, and more stable, in mf and male stages than in the female 

target, thus making them more susceptible to drug treatments. Furthermore, differences in 

bioaccumulation of drugs in mf and adult males may vary compared to females. Wolbachia 

also reside in reproductive tissues within the female, presenting another compartment 

which may present a challenge in terms of drug permeability. As a result, compounds 

providing encouraging data in current in vitro systems can be prematurely progressed to the 

pre-clinical stage and fail, resulting in the use of large numbers of animals, which could be 

reduced with a more appropriate, robust in vitro model. 

There are currently no consistent means of determining in vivo drug efficacy until the end of 

study, therefore requiring animal sacrifice. The only method which can be used is the invasive 

sampling of mf within the peritoneal cavity to determine if drugs have been effective in 

blocking embryogenesis and inducing sterility in female worms. However, this also requires 

animals to be anaesthetised. As efficacy cannot be determined longitudinally, multiple 

animal groups are required to assess different treatment and washout regimes. This slows 

the progression of candidates and adds further costs to in vivo studies.  

To summarise, there are several areas within the field of anti-filarial drug screening in which 

the 3Rs principles can be incorporated to improve experimental outcomes, whilst refining, 

reducing, and potentially replacing the use of animals for this purpose. 
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1.25. Thesis aims 

• Reduction 

With the overall aim of reducing the number of animals used in filarial drug development, 

chapter 2 will aim to develop a larval in vitro model able to support parasite development to 

enable drug testing against these larval stages to reduce animal testing. Chapter 3 will define 

whether using immunodeficient mouse models can offer any significant benefit for long-

term B. malayi infections in comparison to gerbils, to reduce the number of rodents initially 

required for infection. Chapter 3 will also focus on the development of stage-specific in vitro 

adult cultures, and assessing whether the addition of different feeder cell layers can enhance 

parasite survival. These in vitro cultured parasites will be robustly assessed using an array of 

metabolic and molecular techniques to accurately compare against parasites excised from 

parallel in vivo experiments. This in vitro system will then be initially validated for use as a 

drug model, utilising reference ‘gold-standard’ anti-Wolbachia and direct-acting compounds, 

before evaluating the efficacy of novel therapeutics, to reduce the number of animals utilised 

for pre-clinical testing against adult stage parasites without prior in vitro testing against this 

life-cycle stage.  

• Refinement 

Chapters 4 and 5 will focus on the optimisation of longitudinal, non-invasive bio-imaging 

tools for use as prognostic indicators of drug efficacy in vivo to refine animal usage during 

pre-clinical drug development stages. More specifically, chapter 4 will evaluate the use of 

ultrasonography to visualise adult stage B. malayi to discern whether animals can be grouped 

based on infection intensity prior to drug testing, and whether ultrasonography can be used 

to predict direct-acting treatment efficacy against adult stage parasites. Chapter 5 will 
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optimise the fluorescent staining B. malayi microfilariae life cycle stages, and evaluate the 

persistence of fluorescent signals using the Perkin Elmer in vivo imaging system (IVIS), before 

drug challenge studies begin to determine whether drug efficacy can be evaluated using 

these tools.  

• Replacement 

Different in vitro systems, using an array of cell types and media, will be evaluated in chapter 

2 in attempts to support the development of B. malayi larvae from mosquitoes through to 

adults capable of releasing microfilariae, negating the need for a rodent host. In vitro reared 

parasites will be compared against parallel in vivo parasites and evaluated using molecular 

and cellular techniques. A similar system will also be optimised to support the initial 

development of Dirofilariae immitis. 
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 Development of a larval filarial growth culture 

system 
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2.1. Abstract 

The heavy reliance on animal models within filarial drug development is primarily due to the 

lack of an in vitro system capable of supporting the development from larval stages through 

to fecund adults. Although some attempts have been made to culture larval stages, 

reproducibility is very low and parasites have not been robustly analysed to ensure in vivo 

likeness. This chapter evaluates the suitability of different feeder cell and cell-free cultures 

to support the development of L3 Brugia malayi, using multiple molecular analyses to 

confirm in vitro ‘fitness’ against tandem in vivo infections. Similar systems were also set-up 

to evaluate the in vitro development of the veterinary filariae, Dirofilaria immitis, with the 

over-arching aim of reducing, and potentially replacing, the need for animals in maintaining 

the filarial life cycles, and for larval drug screening purposes. It was found that feeder cells 

offered improvements in the culture longevity of both B. malayi and D. immitis, compared 

to cell-free systems. Cultured B. malayi were comparable to those extracted from mice for 

up to 8 days, however beyond this point parasite health deteriorated across all culture 

conditions and were no longer comparable to those in vivo of the same time-frame. More 

encouragingly, cell cultures were able to support the development of D. immitis larvae in 

vitro for upwards of 38 days with a 30% survival rate. These data conclude that whilst it 

remains unattainable to achieve the whole life-cycle from larval mosquito stages to fecund 

adults in vitro, there is potential to conduct in vitro larval stage drug testing, which would 

significantly reduce the number of animals for this purpose.



CHAPTER 2 

67 

 

2.2. Introduction  

The inability to generate the filarial life-cycle in vitro results in the heavy reliance on rodent 

models, such as mice and gerbils, to produce different life-cycle stages for experimental 

purposes and pre-clinical drug screening (Halliday et al., 2014). Furthermore, the lack of a 

functional larval-specific in vitro model hinders the progression of potential prophylactic 

treatments, particularly in the context of the veterinary filariae, Dirofilariae immitis. The 

development of an in vitro model suitable to sustain the development to fecund adults, or 

at least for up to 28 days to ensure robust analysis of any potential anti-Wolbachia drug 

candidates, could potentially obviate the need for such animal models.  

Several researchers have attempted to re-create the first moulting stage (L3-L4) in vitro, 

some of which have been successful enough to support development to adults, which were 

capable of releasing mf (Riberu et al., 1990).One significant issue prevails however, in that 

experiments cannot be repeated with equivocal success rates. The predominant reason for 

this is due to the use of human serum, often used in high concentrations, which contains a 

multitude of factors which may support parasite development, and can significantly differ 

between batch, individual, infection status, and medical history. This was further exemplified 

in a study conducted by Smilie et al, which defined significantly different success rates 

between commercially obtained serum, pooled serum from hospital patients, serum isolated 

from a single individual (Smillie et al., 1994). 

Cell feeder layers have been well documented in the support of parasite development in 

other filarial species, for example in the maintenance and development of Onchocerca 

(Townson, 1988, Voronin et al., 2019), and more recently, Mansonella (Njouendou et al., 

2017) and Loa loa (Zofou et al., 2018) larval stages. This has rendered monkey kidney cells 

(LLCMK2) as the ‘gold standard’ in supporting parasite development in vitro. Other cell types 
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have also been utilised in the context of Brugian cultures, including human dermal fibroblasts 

and Jurkat T cell leukemia cell lines, monkey kidney cells (Falcone et al., 1995, Falcone et al., 

1996), and peripheral blood mononuclear cells. However, despite promoting moulting, all 

cell systems required serum supplementation, often from a human source, again creating 

issues surrounding the reproducibility of these cultures.  

Although culture attempts are less documented with Dirofilariae, feeder cells have also been 

employed to promote moulting, for example co-culture with dog sarcoma cell lines 

(Devaney, 1985, Abraham et al., 1987).  

Appropriate tandem in vivo controls are lacking from the majority of reported cultured 

systems for Brugia and Dirofilariae species, thus highlighting whether these systems are 

translational to an in vivo setting. Furthermore, the parameters evaluating moulting 

efficiency are often subject to the investigator, for example the counting of cast cuticles in 

culture, or do not robustly analyse parasite ‘fitness’ by means of biochemical analyses or 

assessing Wolbachia loads, known to be essential for the development and survival of these 

parasites (McGarry et al., 2004b, Taylor et al., 2010b). Additionally, none of the systems 

described have been applied, or adequately validated for downstream applications as an in 

vitro drug model have not been successful in supporting the full life-cycle of filariae in vitro. 

Thus, animal models are still heavily relied upon for the generation of all life cycle stages and 

for larval drug screening purposes, highlighting the urgency for a robust in vitro model that 

allows for animal usage to be significantly reduced, or replaced. 
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2.3. Scientific and 3Rs Aims 

• The development of an in vitro system to generate adult worms (at least 28 

days old) from mosquito stage L3 parasites to replace the need for rodent 

models to generate adult stage parasites. 

• Development of an in vitro larval growth model system suitable for assessing 

direct and anti-Wolbachia prophylactic drug candidates for veterinary 

indications (heartworm), reducing and replacing the need for animals as larval 

drug screening models. 
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2.4. Materials and Methods 

 Animals 

Interleukin four receptor alpha (IL-4R)-/-IL-5-/- BALB/c breeding pairs were a gift from Achim 

Hoerauf, University Hospital, Bonn. Male CB.17 Severe-Combined Immuno Deficient (SCID) 

mice were purchased from Charles River, UK. Meriones unguiculatus (Mongolian gerbils; 

jirds) breeding pairs were purchased from Charles River, Europe. Animal stocks were 

maintained under specific pathogen-free (SPF) conditions at the biomedical services unit 

(BSU), University of Liverpool, Liverpool, UK. Male IL-4R-/-IL-5-/- BALB/c mice were 6-8 weeks 

old and weighed 18-24 g at start of experiments. Male gerbils were 4–6 months old and 

weighed 80–100 g at start of experiments. All experiments were approved by the ethical 

committees of the University of Liverpool and Liverpool School of Tropical Medicine (LSTM) 

and conducted under Home Office Animals (Scientific Procedures) Act 1986 (UK) 

requirements. 

 Brugia malayi parasite maintenance 

The life cycle of B. malayi was maintained in mosquitoes and Mongolian gerbils. For B. 

malayi larvae (BmL3) generation, microfilariae (mf) were collected from infected gerbils via 

catheterisation. For this, Mongolian gerbils were anaesthetized with isoflurane and 

subjected to peritoneal washes with RPMI 1640 media (ThermoFisher Scientific) to harvest 

mf. Mf were then purified using PD10 column size exclusion chromatography (Amersham), 

enumerated by microscopy and mixed with human blood to a final concentration of 15–

20,000 mf/ml. Mf were then fed to female Aedes aegypti mosquitoes through an artificial 

membrane feeder (Hemotek). Blood fed mosquitoes were reared for 14 days with daily 

sugar-water feeding to allow development to BmL3 stage. At day 14, BmL3 were collected 

from infected mosquitoes by crushing and concentration using a Baermann’s apparatus and 

Roswell Park Memorial Institute (RPMI) media (Sigma). 
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 In vitro culture of BmL3 stage parasites 

The fraction from the crush containing L3 parasites was then transferred into a petri-dish. 

Highly motile L3 were then picked using a pipette and transferred into a 15ml falcon tube 

containing fresh, pre-warmed RPMI media with penicillin-streptomycin to remove any 

remaining mosquito debris. Tubes were then incubated in a water bath set to 37˚C and 

parasites were left for 20 minutes to allow gravitation to the bottom of the tube. Once 

parasites had settled, they were removed and placed into a tube with fresh RPMI media and 

the process was repeated twice to thoroughly wash parasites. Following the wash stages, 

parasites were plated into 12 well plates containing 3ml RPMI media + 10% Heat inactivated 

Foetal Bovine Serum (HI FBS; Sigma) at a density of ≤50 parasites/well. Plates were incubated 

overnight at 37 ˚C with 5% CO2. Following overnight incubation, parasites that had died or 

deteriorated over night were removed and discarded. Those that remained highly motile 

were selected for culture and plated at a density of 20 L3/well onto each culture condition 

(n=20/well). Media was changed every 3 days. Cultured parasites were taken for analysis at 

day 8, after the L3-L4 should have been completed, and day 14 as a final endpoint.  

 Cell culture 

Human Embryonic Kidney (HEK) 293 cell line: HEK cells were purchased from Lonza and 

cultured at 37˚C with 5% CO2 in Dulbecco’s Modified Eagle Medium (DMEM) supplemented 

with 2mM L-glutamine, 10% heat-inactivated FBS (Sigma), 100 U/ml penicillin, 100 µg/ml 

streptomycin (Pen/Strep, Gibco), and 1 mM Pyruvate. Cells were seeded at a density of 3000-

5000 cells/cm2 in 75 cm2 (T-75) cell culture treated flasks.  

Lilly Laboratories Cell Monkey Kidney 2 (LLCMK2) cell line: The rhesus monkey kidney cell 

lines were a kind gift from Dr Simon Townson and maintained in Minimum Essential Media 

(MEM) with 10% HI FBS, 100 U/ml penicillin and 100 µg/ml streptomycin. Cells were seeded 
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at a density of 2-4x10,000 cells/cm2 in T-75 cell culture treated flasks and were split at 70-

80% confluency.  

Lymphatic Endothelial Cell (HMVEC-dLyAd; LEC) line: LECs, a primary cell line derived from 

adult human dermal lymphatic microvascular endothelial cells, were purchased from Lonza 

and cultured at 37˚C with 5% CO2 in Microvascular Endothelial Cell Growth Medium-2 (EGM-

2 MV) media. Media was composed of Endothelial Basal Media (EBM-2) supplemented with 

the EGM-2 MV SingleQuots bullet kit (Lonza), to make up EGM-2 MV full media. 

Madin-Darby Canine Kidney (MDCK) cell line: MDCKs, derived from the kidney tubule of 

adult Cocker Spaniels, were purchased from The European Collection of Authenticated Cell 

Cultures (ECACC) of Public Health England. Cells were cultured at 37˚C with 5% CO2 in 

Minimum Essential Eagle Media (MEM) with 10% HI FBS, 100 U/ml penicillin and 100 µg/ml 

streptomycin. Cells were seeded at a density of 3000-5000 cells/cm2 in 75 cm2 (T-75) cell 

culture treated flasks. 

For passaging, all cell types were washed with sterile Phosphate Buffered Saline (Sigma), to 

ensure removal of any dead cells, and incubated for ≤5 minutes with 0.25% (w/v) trypsin-

ethyldiaminetetraacetic acid (EDTA). Trypsin activity was neutralised by the addition of the 

equivalent volume of media, containing FBS. Cells were further detached mechanically, using 

a cell scraper (purchased), and centrifuged at 1500 x rpm for 10 minutes. The clear 

supernatant was removed and the cell-containing pellet was re-suspended in corresponding 

culture media, and counted with 0.4% trypan blue using a TC10 automated cell counter (Bio-

Rad). 

 Parallel in vivo experiments 

To ensure an appropriate in vivo control, male IL4R-/-IL-5-/- mice were infected via the 

intraperitoneal route with 150 L3 of the same batch used for in vitro culture. At the specific 
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time-points when in vitro cultured larvae were taken for analysis, mice were dissected to 

retrieve the same stage larvae for in vivo controls against cultured larvae for all analyses.  

 Motility and survival analyses 

Parasites were examined for motility daily using a 4-score scale, based on a system originally 

devised by Rao and Well (Rao and Well, 2002). Those scoring 0 were considered immotile; 

those with a score of 1 displayed twitching motions of the head or tail; a score of 2 indicated 

slow sigmoidal motility; a score of 3 equated to moderate sigmoidal motility and finally, a 

score of 4 indicated rapid sigmoidal motility, as observed when freshly isolated from in vivo.  

 Length measurement analysis 

To determine growth, an indicator of progression to the next life cycle stage, 6-10 larvae per 

condition were removed from the culture. Larvae were then transferred into fresh PBS and 

cooled at 4C for 20 minutes to reduce motility, in order to improve accuracy of length 

assessments. Individual larvae were then imaged using a Zeiss LSM880 confocal microscope 

using transmitted light. Images were then processed in ImageJ to calculate length.  

 MTT viability assessments 

To assess parasite viability quantitatively at the day 14 end-point, the colorimetric 3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay was employed. The MTT 

assay is based on the concept that cellular NADPH-dependent oxidoreductase enzymes in 

living tissues reduce the MTT yellow dye to the insoluble purple formazan product, which 

can then be quantified using a plate reader, to reflect the number of living cells. For this, 

parasites were removed from culture and washed in pre-warmed PBS. Parasites were 

grouped in numbers of 10 then transferred into separate wells of a 96 well plate and 

incubated with 5 mg/ml MTT (Sigma) in PBS for 2 hours at 37˚C. Following incubation, 

parasites were washed in PBS and incubated for 1 hour with 100% Dimethyl Sulfoxide 
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(DMSO; Sigma) to solubilise the purple formazan product. The plate was then analysed using 

a fluorescent plate reader set at 450nm, including a primary shake step. Data were expressed 

as a percentage change in optical density readings from the in vivo control median.  

 DNA extractions 

DNA extraction was performed on individual parasites using a Qiagen QIAmp DNA mini kit. 

Worms were transferred into Eppendorf tubes and incubated overnight at 56˚C with ATL 

buffer and proteinase K to allow initial protein digestion. After incubation, ethanol (100%) 

was added to tubes and samples were subjected to two wash buffer stages with subsequent 

centrifugation steps at 13x100 rpm. DNA was then eluted with 50l elution buffer and 

transferred to 96 well plates to be frozen for qPCR analysis.  

 Gene cloning and qPCR to determine Wolbachia titres 

Plasmids, containing the inserts of amplified B. malayi Wolbachia (wBm) surface protein, 

were prepared and stored in glycerol stocks at -20˚C for use as qPCR standards. For this, DNA 

was isolated from a single adult female worm using the QIAmp DNA mini kit loosely based 

on the ‘tissue’ protocol provided by Qiagen. Extracted DNA was then amplified with qPCR 

using the following primers: 

• WSP-BamHI (5’ GGA TXX GCT TCT TCA ATA GTG CT 3’) 

• WSP-HindIII (5’ AAG CTT CGC TTG CAG TAC AAT AGT GE 3’) 

The PCR reaction mixture consisted of 1 µl of primers at a concentration of 300 nM, 12.5 µl 

Taq polymerase, 7 µl RNAse free ultra-pure water and 1 µl extracted DNA. The PCR product 

was then ligated into the PCR 2.1 vector and cloned into TOP10 cells, using a standard TOPO 

TA cloning kit (Invitrogen). Sample plasmid DNA was then extracted from the cells using a 

QIAprep Spin Miniprep kit (Qiagen) and quantified using a Nanodrop. 10-fold dilutions were 
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then prepared between 100 pg/ml and 0.1 fg/ml (equivalent to approximately 2 x 107 to 2 x 

101 copies) and stored at -20˚C in glycerol until use.  

For the quantitative PCR (qPCR), standards were diluted in a 7-fold series (from 1 x 107 to 10 

copies/µl). The following degenerate primers, designed to be internal to the cloned 

sequence, were used: 

• WSP 420 (5’ TGT TGG T(AG)T TGG T(GC)T TGG TG 3’) 

• WSP 583 (5’ AAC CAA A(AG)T AGC GAG C(CT)C CA 3’) 

The PCR master reaction mix was constituted of 1x QuantiTect SYBR green PCR Master Mix, 

3.0 mM MgCl2 and 0.2 µM of each primer, made up to 14 µl ultra-pure water. 2 μl of 

standard/sample of DNA was added in duplicate to each tube. Samples were denatured for 

15 minutes at 95˚C, before amplification for 40 cycles at 94˚C for 15 seconds and annealing 

at 60 ˚C for 30 seconds, followed by an increase to 72˚C for 30 seconds. Fluorescence data 

were collected during each cycle at 72˚C. Melting curve analysis ranged between 60 and 95 

˚C to confirm the presence of specific gene products and the absence of non-specific 

products. The thermocycler software generated a standard curve and the copy numbers in 

the starting templates were calculated by reference to this standard curve. Copy numbers 

were determined in duplicate and a mean taken of the results. 

For data analysis, Bm wsp copy numbers were averaged and multiplied by the elution volume 

and divided by the volume of DNA sample added to the reaction mixture (2µl). Data were 

represented graphically as log10 of Wolbachia load per L3.  

 Dirofilariae immitis larval in vitro culture 

L3 stages of the canine filariae, Dirofilariae immitis, were imported from the Filariasis 

Reagent Resource Centre (FR3) laboratories (Georgia, USA) via the Biodefense and Emerging 

Infections Research Resources Repository (BEI). Upon arrival, DiL3 were warmed in a water 
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bath set to 37C for approximately 30 minutes to allow parasites to regain motility. After this 

time, highly motile L3 were picked using a 1000 l pipette and placed at a density of 10-20 / 

well into 12-well plates containing either an MDCK monolayer with 4 ml of EMEM, an 

LLCMK2 monolayer with 4 ml EMEM, or 4 ml EMEM alone. Survival and motility were scored 

daily and experiments were stopped when survival reached 50% for cell-free cultures 

(EMEM) and 30% for Di maintained on the MDCK and LLCMK2 feeder layers. 5-10 parasites 

were taken at baseline L3, 7 days, 12 days, 21 days and 39 days for length measurements. 

 Statistical analysis 

Data were tested for normal distribution using D’Agostino & Pearson omnibus normality 

tests. Data that passed normality tests were analyzed by one-way ANOVA with Tukey’s 

multiple comparisons tests. Data significantly different from a normal distribution were 

analyzed using Kruskal-Wallis with Dunn’s multiple comparisons tests. Significance was 

defined at alpha <0.05 and analyzed using GraphPad Prism v6.0h. 
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2.5. Results 

 Initial primary feeder cell vs cell-free L3 cultures 

Based on the success of larval growth co-cultures of M. perstans and L. loa (Njouendou et 

al., 2017, Zofou et al., 2018) as well as protracted maintenance of Onchocerca adult male 

worms (Townson, 1988), LLCMK2 cells were trialled to assess support of larval growth and 

survival of B. malayi (Figure 2.1). On the LLCMK2 cell layer, B. malayi L3 stages remained 

highly motile for 4 days into culture (Figure.2.1.B). After this point, L3 cultured on LLCMK2 

cells declined in motility, reaching a score of 3 by day 6. LLCMK2 cells supported 100% 

survival for up to 7 days (the in vivo L3-L4 moult point). Survival drastically declined from 

90% at day 6 to 0 by day 9 (Figure 2.1.A). B. malayi L3 cultured without a cell feeder layer 

(MEM) survived for longer, with 10% of parasites alive by the 14 day end-point, (Mantel-Cox 

log rank test; P=0.0015), however motility steadily declined throughout the period with 

surviving parasites displaying an average score of 1.  

The MTT assay was used to determine the viability of cultured parasites in comparison to 

those freshly isolated from IL-4R-/-IL-5-/- mice at the 14 day end-point (Figure 2.1.C). As 

survival was determined as 0 at the end of study in the LLCMK2 group, parasites were taken 

to confirm a lack of viability which was determined with the absence of MTT reductase 

activity. Parasites cultured without cells (MEM) exhibited a lower MTT reductase OD reading 

than the in vivo control (median = 0.0033, range = 0.001-0.0035 O.D. vs median 0.008 O.D, 

range = 0.0006-0.01; Mann-Whitney test, P<0.01), indicating a reduction in viability in 

comparison to the in vivo reared parasites. Due to the limited success of this study, 

Wolbachia titre and length analyses were not conducted.  
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Figure 2.1. Initial Brugia malayi larval primary feeder cell vs cell free cultures.  

Kaplein-meyer survival curves of Brugia malayi L3 cultured with monkey kidney cells (LLCMK2) vs cell-free (MEM) cultures over 

14d in 12-well plates (10-20/well, 37C, 5% CO2 ) (A). Average motility scores of cultured BmL3 on cell (LLCMK2) vs cell-free 

(MEM) culture conditions over 14d (B). MTT reductase activity (viability) of parasites cultured under cell (LLCMK2) and cell-free 

(MEM) conditions in comparison to parasites retrieved from mice at 14d (C). Data is derived from groups of 50 larvae in 

total/group (A-C). Data in C is median O.D. measures ± interquartile range per individual larvae. Significance is indicated 

**P<0.01 
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 Evaluation of different cell and media types on the survival 

and motility of in vitro cultured BmL3 

Following on from the limited success utilising the LLCMK2 cell line, two further mammalian 

cell lines were trialled; HEK and LECs, alongside a variety of different cell-free, media-only 

conditions. By the day 8 time-point, all cell types supported similar, high levels of larval 

survival (average HEK survival = 87.2%; LEC monolayer = 95.5%; LEC + insert = 92.7%) (Figure 

2.2.A). After this point, parasites across all cell conditions showed a gradual decline in 

survival to day 14 (average HEK survival = 30.9%; LEC monolayer = 27.3%; LEC + insert = 

39.0%). Full motility was retained in all surviving parasites across all cell types for 8-10 days. 

After these time-points, motility scores of surviving larvae decreased, reaching a score of 2 

by days 12 and 14 in the LEC monolayer and insert conditions, respectively, whilst parasites 

maintained in the HEK group had declined to a score of 1 by day 12 (figure 2.2.B). 

The survival of parasites maintained under cell-free conditions generally declined more 

quickly than those maintained on cell layers (Figure 2.2.C). Over the course of the 

experiment, survival was significantly greater in parasites maintained in DMEM (Mantel-Cox 

log rank test, P=0.0014). At the day 8 time-point, 100% of parasites were alive in the DMEM 

group, whereas survival had declined across all other cell-free systems (average RPMI 10% 

FBS survival = 65.5%; RPMI 5% FBS survival = 67.9%; RPMI 10% FBS High Glucose = 62.1%; 

RPMI 5% FBS High Glucose = 65.9%; DMEM = 100%; EMEM = 60.4%; EGM2-MV = 72.9%) 

Survival then continued to decrease until day 14, of which a greater proportion of parasites 

survived in the DMEM group (average RPMI 10% FBS survival = 8.5%; RPMI 5% FBS = 9.8%; 

RPMI 10% FBS High Glucose = 8.6%; RPMI 5% FBS High Glucose = 9.9%; DMEM = 19.4%; 

EMEM = 5.4%; EGM-2 MV = 10.2%,). At day 8, parasites in all groups aside from EMEM 

retained full motility (Figure 2.2.D). After this point, motility decreased for the duration of 
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the study whereby all surviving parasites across all groups had a motility score of 1 by day 14 

(Figure 2.2).  

 
Figure 2.2. Survival and motility analysis of BmL3 cultured on different cell and media types for 14d 

Kaplein-meyer survival curve of BmL3 cultured on different endothelial cell types (human endothelial kidney, lymphatic 

endothelial) (A) over 14d in 12-well plates (cultured at a density of 10-20/well, 37C, 5% CO2 ) Average motility scores of BmL3 

cultured on different cell types (B). Kaplein-meyer survival curve of BmL3 cultured on different cell-free media types (RPMI with 

5% or 10% FBS with and without high glucose concentrations, DMEM, EMEM, EGM-2 MV) (C). Average motility scores of BmL3 

cultured on different cell-free media types (D). Data is derived from groups of 80-100 larvae, cultured at 10-20 BmL3/well for 

14d at 37C at 5% CO2 in 12-well plates. Significant difference in survival is indicated *P<0.05, **P<0.01. 
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 Evaluation of different cell and media types on the growth of 

in vitro cultured BmL3 

Length measurements at day 8 confirmed a significant increase in the length of parasites 

recovered from mice (in vivo) in comparison to L3 retrieved directly from mosquitoes (L3 

median = 1.147 mm, range = 0.755-1.423; in vivo median = 1.78, range = 0.896-1.929 mm  

0.05; Kruskal-Wallis statistic = 47.42, Dunn’s multiple comparisons test P=0.0008). Whilst 

increases in length were observed across all the RPMI media variations (RPMI 10% FBS 

median = 1.579 mm, range = 1.513-2.152 mm  0.115; RPMI 5% FBS average = 1.553 mm, 

range = 0.822-2.149; RPMI 10% FBS High Glucose median = 1.652 mm, range = 0.999-1.894; 

RPMI 5% FBS High Glucose median = 1.522 mm, range = 0.825-1.980), only parasites 

maintained in DMEM were significantly longer than mosquito-derived L3 stages (median = 

1.745 mm, range = 1.443-2.206; Dunn’s multiple comparisons test, P=0.0332). Parasites 

maintained in EGM-2 MV and EMEM did not exhibit any growth (EGM-2 MV median = 0.905 

mm, range = 0.762-1.124; EMEM median = 0.945 mm, range = 0.770-1.189) and were 

significantly shorter than those recovered from in vivo (Dunn’s multiple comparisons test, 

P<0.0001) (Figure 2.3.A). 

Parasites cultured in the presence of cells also displayed an increase in length at day 8, with 

those maintained on HEK cells significantly longer than the L3 mosquito stage (median = 

1.743, range = 0.858-2.190; Kruskall-Wallis statistic = 20.91; Dunn’s multiple comparisons 

test P=0.0224) and the longest of all culture conditions at day 8. Parasites maintained on LEC 

monolayers grew to a median of 1.707 mm, range = 0.864-1.908, a length which was 

intermediate between L3 stages and in vivo growth. The LEC + insert condition supported the 

growth of parasites to a median of 1.540 mm (range = 0.690-2.000), which was significantly 

less than the recorded in vivo growth (P=0.0228) (Figure 2.3.B).  
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By day 14, parasites underwent a further growth increase in vivo (median = 2.216 mm, range 

= 1.685–4.058, P=0.0028, Mann-Whitney test). Whilst parasites maintained under cell-free 

conditions exhibited slight length increases in comparison to day 8 (RPMI 10 % FBS median 

= 1.847 mm, range = 1.341-2.324; RPMI 5% FBS median = 1.923 mm, range = 1.695–2.282; 

RPMI 10% FBS High Glucose median = 1.814 mm, range = 0.999–1.973; RPMI 5% FBS High 

Glucose median = 1.92, range = 1.678-2.158; EMEM median = 0.945, range = 0.770-1.337; 

EGM-2 MV median = 1.046, range = 0.776-1.424), all culture conditions were sub-optimal 

compared to in vivo growth (Kruskal-Wallis, Dunn’s multiple comparisons test, versus in vivo 

d14) (Figure 2.3.C). Similarly, all larvae maintained on cell layers demonstrated significantly 

impaired growth compared to in vivo controls (HEK median = 1.737, range = 1.341-2.856; LEC 

median = 1.728, range = 1.373-2.00; LEC + insert median = 1.779, range = 1.599-2.098) (Figure 

2.3.D). 
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Figure 2.3. Length measurements of BmL3 cultured on different cell and media types 

Median length measurements of BmL3 cultured on different cell-free media types after 8 days in culture (10-20/well in 12-well 

plates with RPMI 10% FBS, RPMI 5% FBS with and without high glucose concentrations, DMEM, EMEM, EGM-2 MV) (A). Median 

length measurements of BmL3 cultured on different cell types (human endothelial kidney, lymphatic endothelial) after 8 days 

in culture (B). Median length measurements of BmL3 cultured on different cell-free media types after 14 days in culture (C). 

Median length measurements of BmL3 cultured on different cell types after 14 days in culture (B). All length measurements 

were compared against BmL3 freshly dissected from mosquitoes at the start of study, ‘L3 (mosquito) <pink> and parasites 

recovered from in vivo at the corresponding time point, ‘in-vivo’ <blue>. Horizontal bars represent the median. Error bars 

represent interquartile range. Data is derived from groups of 8-14 larvae/group taken from cultures set up at 10-20/well in 12-

well plates at 37C, 5% CO2. Significance is indicated *P<0.05, ***P<0.001, ****P<0.0001. 
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 Evaluation of Wolbachia titres in BmL3 cultured on different 

cell and media types 

Quantitative (q)PCR analysis carried out on in vivo recovered parasites at day 8 indicated a 

significant expansion of Wolbachia (median = 1.7x105, range = 2.3x104 – 2.94x105) through 

the L3-L4 moult within the host, in comparison to the L3 mosquito stages (median = 1.39x104, 

range = 193 - 6.78x104) (Figure 2.4.A).  

Of all the cultured parasites, only the HEK feeder layer (Figure 2.4.B) and DMEM cell-free 

conditions (Figure 2.4.A) supported Wolbachia expansions which were significantly higher 

than L3 stages and comparable to those in vivo (HEK median = 4.69x104, range = 648 – 

5.5x105; DMEM median = 1.47x105, range = 6.13x104 – 2.14x105; Kruskal-Wallis statistic = 

22.11, both P<0.0001 versus mosquito L3, Dunn’s multiple comparisons test). Wolbachia 

titres failed to expand within LEC and LEC-insert maintained parasites, were significantly 

lower than those in vivo, and comparable to titres in mosquito L3 stages (LEC median = 

1.72x104, range = 950 – 2.5x105; LEC + insert median = 9615, range = 653 – 2.14x104 both 

P<0.0001 versus d14 in vivo L4 larvae, Dunn’s multiple comparisons test). This trend was also 

apparent with the remainder of the cell-free conditions (RPMI 10% FBS median = 2.07x104, 

range = 7.3x103 – 4.86x104; RPMI 5% FBS median = 2.37x104, range = 1.2x104 – 4.94x104; 

RPMI 10% FBS High Glucose median = 1.12x104, range = 2.83x103 – 6.22x104; RPMI 5% FBS 

High Glucose median = 1.4x104, range = 9.46x103 – 6.22x104; EMEM median = 7.35x103, 

range = 2.1x103 – 5.0x104; EGM-2 MV median = 10025, range = 1.62x103 – 3.97x104 all 

P<0.0001 versus d14 in vivo L4 larvae, Dunn’s multiple comparisons test) (Figure 4).  

By day 14, a further expected expansion was confirmed in in vivo recovered parasites 

(median = 6.395x106, range = 1.53x105 – 1.64x107, versus d8 in vivo recovered L4, P<0.0001, 

Mann-Whitney test. No significant expansions were observed in any of the parasites 
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maintained in vitro between d8 and d14 except larvae cultured on HEK feeder layers 

(P=0.0061, Mann-Whitney test) (Figure 2.4.C+D). 

All conditions however, failed to emulate in vivo expansion of Wolbachia at 14 days post-

infection (HEK median = 2.54x105, range = 5.51x104 – 7.04x105; LEC median = 1.81x104, range 

= 3.44x103 – 3.65x104; LEC + insert median = 1.34x104, range = 6.23x103-2.5x104; RPMI 10% 

FBS median = 2.05x104, range = 1.54x103 – 7.39x104; RPMI 5% FBS median = 2.5x104, range 

= 6.5x103 – 7.0 x104; RPMI 10% FBS High Glucose median = 2.44x104, range = 6.93x103 – 

7.34x104; RPMI 5% FBS High Glucose median = 4.0x104, range = 5.9x103 – 8.3x104; DMEM 

median = 2.49x105, range = 5.51x104 – 7.04x105; EMEM median = 8005, range = 1.81x103 – 

4.89x104; EGM-2 MV median = 2.38x104, range = 1.73x103 – 6.0x104 all P<0.0001 versus d14 

in vivo control).  
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Figure 2.4. Wolbachia expansions of in vitro reared parasites compared with baseline BmL3 and 

equivalent in vivo time-point titres  

qPCR Wolbachia load analysis of parasites cultured in different media types (cell-free; RPMI 10% FBS, RPMI 5% FBS – both with 

and without high glucose concentrations, DMEM, EGM-2 MV, EMEM) after 8d in culture (A). qPCR Wolbachia load analysis of 

parasites cultured on different endothelial cell types (human kidney, lymphatic endothelial) after 8d in culture (B). qPCR 

Wolbachia load analysis of parasites cultured in different media types (cell-free) after 14d in culture (C). qPCR Wolbachia load 

analysis of parasites cultured on different cell types after 14d in culture (D). Cross-comparison of Wolbachia titres between the 

most successful cell-free (DMEM) and cell (HEK) cultures between 8 and 14 days in culture (E). All cultures were conducted at 

37C, 5% CO2. Data plotted is derived from groups of 10-20 larvae. Horizontal bars represent the median. Error bars represent 

interquartile range. Significance is indicated *P<0.05, **P<0.01, ****P<0.0001 using a one-way anova comparing culture 

conditions to both L3 from mosquitos and in vivo recovered parasites of the equivalent time-point. Black asterisks indicate 

statistical difference from L3 (mosquito), blue asterisks indicate statistical difference from in vivo derived larvae.  

 

 Evaluation of metabolic activity of BmL3 cultured on 

different cell and media types 

Metabolically active parasites possess MTT reductase enzymes which reduce the tetrazolium 

salt, MTT, to formazan, which can then be quantified as a marker of viability. 14 day end-

point viability assessments confirmed in vivo recovered B. malayi larvae had a median O.D. 

(MTT reductase activity) reading of 0.115 (read at 450nm, range = 0.066 – 0.196) (Figure 

2.5.A+B). In comparison, all larvae, cultured either with or without feeder cells, exhibited a 

significantly reduced MTT reductase activity in comparison to in vivo recovered parasites 

(HEK median = 0.067 OD, range = 0.055 – 0.08; LEC median = 0.042 OD, range = 0.02-0.067; 

LEC + insert median = 0.040 OD, range = 0.005 – 0.065; RPMI 10% FBS median = 0.065 OD, 

range = 0.056 – 0.071; RPMI 5% FBS median = 0.054 OD, range = 0.034 – 0.063; RPMI 10% 

FBS High Glucose median = 0.069 OD, range = 0.054 – 0.114; RPMI 5% FBS High Glucose 

median = 0.080 OD, range = 0.054 – 0.114; DMEM median = 0.0605 OD, range = 0.040 – 

0.100; EMEM median = 0.043OD, range = 0.025 – 0.064; EGM-2 MV median = 0.0345 OD, 
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range = 0.02 – 0.063 all P<0.0001 versus d14 in vivo larvae except 5% FBS high glucose, 

P<0.01, Kruskal Wallis with Dunn’s multiple comparisons test). 

 
Figure 2.5. Assessment of metabolic activity of cultured Bm larvae at day 14 in comparison to 

parasites reared in vivo  

MTT reductase activity of Bm larvae cultured in different media types after 14 days (cell-free; RPMI 10% FBS, RPMI 5% FBS both 

with and without high glucose concentrations, DMEM, EGM-2 MV, EMEM) (A). MTT reductase activity of Bm larvae cultured on 

different endothelial cell types (human endothelial kidney, lymphatic endothelial) after 14 days (cells) (B). Cultures were 

conducted at 37C, 5% CO2 in 12-well plates at 10-20 L3/well. Horizontal bars represent the median. Error bars represent 

interquartile range. Data is derived from 10-11 larvae per group. Significance is indicated **P<0.01, ****P<0.0001. 
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 Initial Dirofilariae immitis in vitro cultures 

Initial in vitro cultures of the veterinary / zoonotic filarial nematode, Dirofilaria immitis, 

demonstrated improved survival with the presence of an MDCK feeder cell layer (P<0.0001, 

Mantel-Cox log rank test), with 38% parasites surviving after 38 days in culture, on average 

(Figure 2.6.A). D. immitis larvae cultured without the presence of cells exhibited a decrease 

in survival earlier into cultures, by around day 20. Parasite survival continued to decline until 

day 28 when no parasites were considered motile (alive) at this point. Parasites cultured on 

LLCMK2 cell layers survived better than with media alone, with approximately 20% of 

parasites surviving up to 38 days in culture (Figure 2.6.B). 

The motility of cultured D. immitis larvae remained high at a score of 4 for 5, 9 and 10 days 

into culture for those maintained on LLCMK2 feeder layers, cell-free conditions (EMEM) and 

MDCK cell layers, respectively (Figure 2.6.C). Parasites maintained without cells retained a 

score of 3 for the duration of the study, until all parasites had perished. D. immitis larvae 

maintained on the MDCK feeder layer displayed a reduced motility for approximately 15 

days, before regaining motility until the end of the study. Parasites maintained on the 

LLCMK2 feeder layer also displayed a reduced motility for approximately 25 days in culture, 

before displaying an increased motility from day 30 until the study end-point. 

Length measurements were taken in a repeat study using only MDCK cells vs cell-free 

(EMEM) conditions at multiple time points throughout the culture (Figure 2.6.D). 

Measurements indicated an initial slow growth up until day 39 in parasites maintained on 

the MDCK feeder layer, which were significantly longer than L3 stage D. immitis larvae at the 

start of the study. No differences in length were observed between D. immitis larvae 

maintained with or without cells at earlier time-points (d7 and 12). 
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Figure 2.6. Initial in vitro Dirofilariae immitis larval cultures  

Kaplein-meyer survival curve of Di larvae maintained in cultures over 39 days with MDCK cells or EMEM media (cell free) (A), 

table summarizing survival between MDCK, LLCMK2 and EMEM cultures at 50% and 30% survival (B), average motility scores 

of Di larvae over the course of the culture period on MDCK, LLCMK2 cells or EMEM media (C), length measurements of cultured 

Di at days 7, 12 and 39 (D). Bars represent median ± interquartile range. Larvae were plated at a density of 10 L3/well with 

cultures conducted at 37C, 5% CO2 in 12-well plates. Data is derived from 10 larvae per group (A-C), data is derived from 5-7 

larvae (D). Significance is indicated ***P<0.001, ****P<0.0001. 
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2.6. Discussion 

Previous attempts to culture larval stages of B. malayi have been difficult to reproduce due 

to the use of variable lots of human serum in high concentrations. 

Although the benefit of adding cells to parasite cultures is well documented in Onchocerca, 

Mansonella and Loa loa cultures, it is difficult to draw conclusions from Brugian co-cultures 

due to the continual addition of human sera (Falcone et al., 1995, Riberu et al., 1990, Smillie 

et al., 1994, Tippawangkosol et al., 2002, Mak et al., 1983). Difficulties in reproducibility have 

hindered the development of these platforms into systems suitable for assessing drug 

efficacy, and an alternative model to produce adult stage parasites, thereby reducing animal 

usage. 

To minimise issues with reproducibility, commercially available FBS was used across all 

cultures in this chapter, at concentrations relevant to the physiological setting (5-10%). 

Although previous literature has suggested the benefit of adding 75 M ascorbic acid to 

cultures, the supplement kit added to make up the EGM-2 MV media already contained 

ascorbic acid, which is well within the physiological range, and thus no further ascorbic acid 

was added. Other researchers also using this media described the benefit of adding 75 M 

ascorbic acid to EGM-2 MV (Lu et al., 2018), however did not make it clear whether this was 

added to the existing concentration, or instead of, questioning the validity of these data. No 

clear benefit of adding ascorbic acid to the culture media was concluded from the cultures 

conducted in this chapter, and thus was not experimented across any other media or feeder 

cell layer. 

Non-standardised metrics have commonly been used to determine culture success. Moulting 

rate is one such method however the techniques to establish this are variable; either by 

counting the number of cuticles shed into the culture well, or morphological analysis which 

may be subjective to the investigator. Attempts were made to quantify the number of shed 
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cuticles across all culture types tested, however this was determined to be unreliable due to 

cuticles adhering to cell feeder layers which made them difficult to visualise.  

Full survival and motility analyses have rarely been reported in previous literature, 

presumably due to the low percentage of parasites surviving to further life-cycle stages. 

Survival analyses from this study highlighted an improvement with the addition of feeder 

cells for up to 8 days into culture. Beyond this point, larval health declined both with and 

without the presence of cells, however the survival was greater overall with the addition of 

cells. No cell type; lymphatic specific (LEC) or general mammalian endothelial cell type 

(LLCMK2, HEK), were significantly better than another in terms of survival. This might suggest 

the addition of cells provided more of a physical effect, whereby parasites may use the cells 

to aid ex-sheathment, rather than the secretion of tissue and/or species -specific paracrine 

molecules to promote moulting and growth. Alternatively, factors secreted universally by all 

cell types may be responsible in temporarily supporting the early development of B. malayi 

larvae. Separation of larvae from co-cultures in trans-well inserts would help to resolve which 

of these hypotheses are correct. 

Length measurements have been reported in some previous culture studies, although only 

very few have an in vivo comparator. Here, measurements at day 8 confirmed growth, and 

hence development of B. malayi, in comparison to L3 stages fresh from mosquitoes. Length 

was only significantly greater, and comparable to in vivo retrieved B. malayi, in larvae 

maintained on the HEK feeder layer or the cell-free DMEM. By day 14, in vitro reared 

parasites had not grown to the same extent as those in vivo and thus were no longer 

representative of in vivo development. Similar phenomena have been observed in previous 

studies whereby cultured parasites were comparable in length to data recorded for jirds after 

8 days (Falcone et al., 1995, Ash and Riley, 1970), however after this point were also no 

longer comparable. Within the same study, the length of parasites cultured in 10% human 
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serum were sub-optimal in comparison to equivalent time points in in vivo data sets collected 

in this chapter.  

To further evaluate whether in vitro cultured parasites were comparable to those in vivo, 

Wolbachia titres were evaluated. This was also important for potential future use of B. 

malayi cultured larvae in anti-Wolbachia drug screening. It is well versed that filarial worms 

undergo an extensive Wolbachia expansion upon entry into to mammalian host, as early as 

8 days (McGarry et al., 2004a, Fischer et al., 2011), and is essential for the survival and 

development of the parasite, as documented by the inability to develop to adult stage upon 

elimination of Wolbachia with tetracyclines in early larval infections in jirds (Bosshardt et al., 

1993). Although Wolbachia populations had increased in comparison to L3, only those 

maintained on HEK monolayers, or DMEM, had titres statistically comparable to those 

recovered in vivo. However, despite expanding further between day 8 and the study end-

point, Wolbachia expansions were sub-optimal compared to those in vivo. Failure to expand 

Wolbachia populations coincided with the decrease in survival, suggesting that sub-optimal 

Wolbachia populations might be the critical factor for loss of viability during the L4 growth 

phase (Veneti et al., 2003, Ferree and Sullivan, 2006, Clark et al., 2003).These culture 

conditions therefore may be useful in the future to determine intrinsic Wolbachia-products 

aiding growth of larval B. malayi via addition of specific Wolbachia derived macromolecules 

into the co-cultures. For instance, Wolbachia haem biosynthesis has been demonstrated to 

be important in the symbiosis, with B. malayi lacking specific haem biosynthetic enzymes 

(Gill PLoS NTD 2014). It is possible therefore that titrations of exogenous haem might 

overcome the demise of L4 in in vitro co-culture systems. Further, introduction of functional 

Wolbachia haem biosynthetic enzymes in culture may elucidate the filarial-Wolbachia 

symbiosis at this point in the life cycle.  
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This is the first time Wolbachia has been analysed within the context of cultured B. malayi 

parasites. The fact that parasites cultured under certain conditions (ie HEK co-cultures) are 

able to grow and expand for up to 8 days suggests parasites are representative of the in vivo 

situation at this point. The evidence that parasites in some groups display lengths 

comparable to those in vivo, despite having sub-optimal Wolbachia loads, leads to the 

hypothesis that the L3-L4 stage may not be as highly dependent on Wolbachia and instead, 

is more crucial in the preparation and process of the L4-L5 (immature adult) moult.  

 It is thus evident, through previous studies and work described here, that a component is 

lacking from both systems which is not released from the cell types trialled. Falcone et al 

utilised a two-cell system; human dermal fibroblasts and a human jurkat leukemia T cell line, 

albeit still using human sera; however only a very small percentage (2.6%) were able to 

survive to the young adult stage. In earlier studies, parasites that were initially primed in 

rodent hosts were then able to survive in vitro, suggesting a ‘priming’ effect, potentially from 

the immune system. The role of immune cells potentially elongating parasite culture is 

evident in work by Turner et al, whereby the addition of alternatively activated macrophages 

appear to enhance the survival of L3 over 7 days (Turner et al., 2018). Immune cells have also 

been found to elongate Onchocerca cultures, where after transfer onto PBMCs after initial 

culture on LLCMK2 cells, parasites are able to develop further and can be utilised in drug 

screens (Voronin et al., 2019). These outcomes thus may indicate that a more complex cell 

system would aid Brugia survival in vitro. Matrigels with multiple cell types were considered 

– however these were not feasible as they would not allow for the retrieval of live parasites 

for confirmatory analyses. 

In conclusion, the systems evaluated were not able to offer a replacement for animal models. 

Instead, a B. malayi culture system using HEKs may be appropriate for a short-term (7 days) 
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drug assay to assess anti-Wolbachia or direct-acting drug candidates, as within this time-

frame in vitro cultured parasites are comparable to those in vivo.  

Alternatively, there is greater optimism for a D. immitis in vitro culture system that may 

replace the use of experimentally infected dogs. Initial experiments have indicated parasites 

are able to survive much longer in culture than Brugia, potentially due to being of a different 

clade of filariae which is more related to Onchocera, which also survive in culture for much 

longer periods than Brugia. Instead, client owned dogs which are naturally infected with D. 

immitis could be a source of microfilariae to feed mosquitoes to produce L3 for drug 

screening purposes and the development of further life-cycle stages. However, with a lack of 

a rodent in vivo model to provide an appropriate in vivo comparator, further evaluation of 

the culture system would need to be conducted, for example analyses of Wolbachia titres. 
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 Development and initial validation of a long-term 

adult female Brugia malayi culture system for screening 

macrofilaricidal candidates 
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3.1. Abstract 

The development of new drugs targeting adult stage filarial parasites is significantly hindered 

by the lack of a robust in vitro model. Instead, the testing of potential direct-acting and anti-

Wolbachia therapeutic candidates heavily relies on pre-clinical mouse or gerbil models. To 

develop new in vitro systems, adult worms need to be harvested from these infection 

models, of which the worm burden is often highly variable. To compensate for this, 

additional animals are required for infection. This chapter evaluates parasite burden data 

collated over 10 years from immune-deficient mouse strains and outbred Mongolian gerbils, 

to establish the optimal species and strain to generate a high level of parasites with low 

variation, to reduce the number of animals initially required for infection. Adult worms 

extracted from this selected model were then tested under different feeder cell and cell-free 

conditions to optimise and validate a long-term in vitro model. To ensure the model 

successfully translates to pre-clinical testing, cultured parasites were compared against 

those freshly isolated from in vivo using biochemical and molecular analyses. IL-4R-/-IL-5-/- 

BALB/c selective immunodeficient mice were superior to both CB.17 SCID mice and 

Mongolian gerbils in generating high yields of adult worms with less variation. Adult females 

retrieved from these mice could be successfully cultured for up to 21 days in the presence of 

a lymphatic endothelial cell co-culture system with comparable motility, metabolic activity 

and Wolbachia titres to those maintained in vivo for identical time-frames. Drug validation 

studies, using both reference and novel direct-acting and anti-Wolbachia therapeutics, 

confirmed efficacy which could be discerned between compounds. This confirms the utility 

of the in vitro model in informing, and providing an alternative to immediate pre-clinical 

screening, thus reducing the number of animals used for this purpose.  
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3.2. Introduction  

Identification of novel macrofilaricidal drugs is hampered due to both low throughput and 

short life-span of adult filarial parasites in vitro. The majority of anti-filarial or anti-Wolbachia 

in vitro drug screens utilise more accessible and/or abundant life cycle stages; namely the mf 

or infectious L3 stage (Clare et al., 2019, Hong et al., 2019, Storey et al., 2014, Voronin et al., 

2019, Townson et al., 1987, Abraham et al., 1987). A major caveat to these screening systems 

is that anthelmintic or anti-Wolbachia activities may not translate to the target adult stages 

of the parasite due to stage-specific expression of drug targets or relative yields and cell 

division rates of Wolbachia symbionts.  

Although some in vitro adult filarial drug screening models exist, they are generally limited 

to short-term experiments of 7 days or less due to the unreliability of maintaining viable 

adult filariae for more extended periods of time. A notable exception to this has been the 

development of a monkey kidney cell co-culture drug screening system of male filariae of 

the bovine onchocerca parasite, Onchocerca gutturosa, a surrogate for O. volvulus, whereby 

adult parasites can be maintained for upwards of 4 months (Townson et al., 1986).  

In terms of human lymphatic filariasis drug screening platforms, elongation of the culture 

period to maintain viable adult parasites has been less successful. The majority of cultures 

have focused on media-only systems, predominantly using RPMI with FBS, in which parasites 

are cultured between 24 and 120 hours in order to evaluate the effects of rapid direct-acting 

macrofilaricides, nanoparticle formulations or gene expression (Marcellino et al., 2012, 

O’Neill et al., 2016, Ballesteros et al., 2016). The longest culture period reported used 

endothelial basal media supplemented with 20% calf serum, however worm survival 

deteriorated by day 13 (Lu et al., 2018). 

More recently, feeder cell co-cultures have been assessed for the rodent parasite 

Litomosoides sigmodontis. Adult female culture can be extended from 5 to 40 days, with a 
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50% survival rate, due to the co-culture of a murine endothelial cell line (EOMA). 

Contrastingly, a study using B. malayi female worms showed no additional benefit of 

culturing in the presence of human primary lymphatic endothelial cells compared with serum 

supplemented medium, with reductions in survival at 13 days (Evans et al., 2016). 

Parameters evaluating in vitro parasite fitness have centred around motility and survival 

assessments, which are often subjective to the investigator. In efforts to combat this 

subjectivity and to also increase the throughput of drug screens, imaging platforms and 

computer applications have been developed to automate this process and increase the 

reliability of scoring (Partridge et al., 2018, Buckingham et al., 2014, Storey et al., 2014). 

 To incorporate quantitative assessments of viability into analyses, some studies have 

employed the MTT assay, as previously described in Chapter 2. 

No studies thus far have evaluated the stability of endosymbiont Wolbachia populations in 

cultured parasites. Additionally, in all systems scrutinised, comparison with an appropriate 

in vivo control has not been documented, raising uncertainties of the quality of cultured 

worms and utility in drug screening experiments. For instance, current in vitro systems may 

be prone to a higher than desirable ‘false hit’ rate because viability of parasites and stress 

responses induced ex vivo may influence sensitivity to test compounds. For example, Geary 

et al described the dysregulation of several genes encoding stress indicators after retrieval 

from jirds, which remained over 5 days of in vitro culture (Ballesteros et al., 2016). 

Furthermore, an induction of autophagy due to physiological stress may increase sensitivity 

to Wolbachia depletion, as filarial Wolbachia populations are known to be regulated by 

autophagic processes (Voronin et al., 2012). Combined, these phenomena can result in 

parasites that do not accurately replicate the physiological conditions at the infection site in 

a host and consequently, drug screening ‘hits’ identified through these in vitro systems may 
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lead to failure of translation in in vivo studies due to artefactual sensitivities both to direct 

acting and anti-Wolbachia compounds in vitro. 

As discussed briefly in the introduction chapter, there is no robust, reproducible in vitro 

system to propagate adult stage filarial parasites from infectious stage larvae, and certainly 

no system which produces mature fecund female parasites. Therefore, adult stage drug 

screening relies on the use of animals to propagate numbers of adult stages required for in 

vitro screening experiments. Such animal models are expensive, time consuming and 

sometimes logistically challenging to use for the generation of adult-stage parasites. Whilst 

the gerbil model is a useful laboratory model for generation of Litomosoides or Brugia, the 

productivity in terms of numbers of adults and mf produced is highly variable, declines with 

age of infection and is generally low yielding, especially for the human parasite B. malayi. For 

drug testing this reduces the throughput and overall translation of preclinical candidates.  

More recently, immunodeficient mice have been appraised as long term susceptible hosts 

for Brugia, Lito and loa loa (Halliday et al., 2014, Nelson et al., 1991a, Pionnier et al., 2019) 

and have been validated as a functional drug model for microfilaricides, macrofilaricides and 

anti-Wolbachia candidates (Pionnier et al., 2019, Halliday et al., 2014) models provide an 

alternative in vivo system and also alleviate some of the issues with parasite variation. 

From a 3Rs perspective, lack of validation regarding in vitro cultured adult filarial fitness, 

including Wolbachia stability compared to the in vivo condition, is of concern. ‘False-hits’ 

caused by artefacts of in vitro culture may lead to incorrect transition into in vivo pre-clinical 

testing, which increases the number of animals used for in vivo screening purposes. The high 

variability of parasite loads from jirds and decrease in infection levels with age, requires more 

animals to be initially infected to compensate for this. Inbred immunodeficient mice may 

provide higher yielding infection models as substitutes for gerbils, reducing overall animal 

use. 
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The inability to generate the filarial life-cycle in vitro results in the heavy reliance on rodent 

models, such as mice and gerbils, to produce different life-cycle stages for experimental 

purposes and pre-clinical drug screening (Halliday et al., 2014). 
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3.3. Scientific and 3Rs aims 

• Assess whether an IL-4R-/-IL-5-/- BALB/c selective immunodeficient mouse 

infection model is a comparable or superior alternative to gerbils or CB.17 SCID 

mice for the propagation and long term laboratory in vivo maintenance of B. 

malayi adults and mf, to reduce the number of animals for life0cycle 

maintenance and parasite generation.  

• Optimise a long-term in vitro female Brugia malayi culture system, using 

different feeder cell layers and media types, suitable for testing 

pharmacodynamics of anti-Wolbachia or nematodicidal compounds. 

• Evaluate the in vitro ‘fitness’ of cultured worms using motility, survival, 

metabolic activity assays and qPCR readouts to quantify parasite viability and 

endosymbiont Wolbachia titres, against matching duration in vivo 

comparators. 

• Validate the culture system using the reference anti-Wolbachia or direct acting 

macrofilaricidal reference drugs: doxycycline and flubendazole to sssess 

whether this in vitro model can be a reliable indicator of drug translation in in 

vivo testing (reduction in overall animal use).  
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3.4. Materials and Methods 

 Animals 

Interleukin four receptor alpha (IL-4R)-/-IL-5-/- BALB/c breeding pairs were a gift from Achim 

Hoerauf, University Hospital, Bonn. Male CB.17 SCID mice were purchased from Charles 

River, UK. Meriones unguiculatus (Mongolian gerbils; jirds) breeding pairs were purchased 

from Charles River, Europe. Animal stocks were maintained under specific pathogen-free 

(SPF) conditions at the biomedical services unit (BSU), University of Liverpool, Liverpool, UK. 

Male IL-4R-/-IL-5-/- BALB/c mice were 6-8 weeks old and weighed 18-24 g at start of 

experiments. Male gerbils were 4–6 months old and weighed 80–100 g at start of 

experiments. All experiments were approved by the ethical committees of the University of 

Liverpool and Liverpool School of Tropical Medicine (LSTM) and conducted under Home 

Office Animals (Scientific Procedures) Act 1986 (UK) requirements. 

 Brugia malayi parasite maintenance  

The life cycle of B. malayi was maintained as previously described in Chapter 2. 

 B. malayi Experimental Infections 

For BmL3 infection, male Mongolian gerbils, aged 4–6 weeks, were injected via the 

intraperitoneal route, with 400 highly motile BmL3 for life cycle maintenance. Alternatively, 

male IL-4R)-/-IL-5-/- mice or male CB.17 SCID mice, both aged 6-8 weeks, were injected with 

150 BmL3 for adult worm stocks. Animals were left for between 12 and 25 weeks post-

infection to allow infections to proceed to the chronic adult stage. 

 Adult B. malayi Implantation Surgeries 

B. malayi adults were collected from infected donor CB.17 SCID or IL-4R)-/-IL-5-/- BALB/c 

mice via peritoneal lavage post-mortem. Parasites were then separated into male and 

female, washed with pre-heated phosphate buffered saline (PBS, Merck) and collected into 
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groups of 10 female and 5 male, or 10 female parasites ready for implantation (total n=6-8). 

Mice were then placed under surgical anaesthesia using isofluorane and received a 

subcutaneous injection of buprenorphine prior to implantation of the above parasite groups 

into the peritoneal cavity. Implantation was achieved by making a small incision into the skin 

and abdominal cavity in the upper right quadrant and inserting parasites into the lower 

abdominal quadrant using a glass pipette to ensure all parasites were maintained in the 

cavity. The incisions were then re-sutured after implant and animals were re-housed as 

before and monitored closely. 

 Cell cultures 

The lymphatic endothelial cell (LEC) line used exclusively throughout this study was 

Lymphatic human microvascular endothelial cells derived from human dermis (HMVECdly; 

Lonza). LEC and human embryonic kidney cells, (HEK293; ECACC) were cultured in T-175 

flasks in Endothelial Basal Media (EGM-2 MV; Lonza) and Dulbecco’s Modified Eagle Media 

(DMEM; Sigma), respectively, in a 5% CO2 incubator set at 37˚C. Media was supplemented 

with 5% foetal bovine serum (FBS; Sigma), 10ml penicillin/streptomycin (Sigma) and 10ml 

amphotericin B (Sigma) and allowed to reach confluence. Cells for use in cultures were 

passaged and plated between a passage number of 2-3. For passaging, cells were washed 

with PBS prior to trypsin-Ethyldiaminetetraacetic acid (EDTA; Sigma) treatment to detach 

cells. After detachment had been confirmed by microscopy, the trypsin solution was 

neutralised with an equal volume of corresponding cell media and the cell suspension was 

centrifuged at 1500xrpm for 10 minutes. The supernatant was then discarded and the pellet 

was re-suspended in cell media before plating onto either 6-well plates, or 6-well transwell 

plates (Corning) to reach a confluent monolayer.  
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 Macrophage co-culture 

To determine whether addition of macrophages to the culture system enhanced parasite 

survival further, a monocyte-derived cell lines, Tohoku Hospital Pediatrics-1 (THP1), derived 

from an acute monocytic leukemia patient (gifted by Professor Giancarlo Biagini, Liverpool 

School of Tropical Medicine), were grown in suspension in a T-75 culture flask with Roswell 

Park Memorial Institute media (RPMI/RPMI 1640; Sigma). To differentiate the THP1s, a 

protocol was adapted from https://bio-protocol.org/e1638. For this, 2 ml of cell suspension 

was transferred into inserts of a 6-well transwell plate, at a concentration of 2 x 105 

cells/insert. Cells were immediately treated with 10 ng/ml of 12-O-tetradecanoylphorbol-I3-

acetate (PMA; Peprotek) for 24 hours, to permanently differentiated into an M0-like 

phenotype. The PMA-containing media was then gently aspirated from the inserts and fresh 

media was replaced. Cells were then allowed to settle prior to further stimulation. For this, 

cells were treated with either 50 ng/ml interferon gamma (IFN-ƴ), or 25 ng/ml of interleukin 

4 (IL-4) and interleukin 13 (IL-13), respectively, for M1- and M2-like differentiation. All 

cytokines were purchased from Peprotek. Terminally differentiated (PMA treated only; M0) 

cells were left untreated in inserts during this period. 48 hours post M(IFN-ƴ) and M(IL-

4/IL-13) stimulation, cells were washed 3 times in fresh media and inserts were added to 

fresh monolayers of LECs in a 6well plate. 6 ml EGM-2 MV media was then added, as 

described previously, ready for the addition of parasites.  

 In vitro culture of parasites 

Adult parasites were isolated from the peritoneal cavities of IL4Rα-/IL5- and CB.17 SCID mice 

via peritoneal lavage post-mortem. Parasites were then washed with pre-warmed, sterile 

RPMI and separated into males and females. Female parasites of high motility and similar 

lengths were selected for culture. Initial culture studies evaluated the survival of female Bm 

on different cell monolayers and cell-free conditions to determine optimum culture 

https://bio-protocol.org/e1638
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conditions and longevity of culture systems. Further optimisation evaluated specific time 

points (2, 3 and 4 week) using survival, motility, viability (MTT) and Wolbachia titres (qPCR) 

as readouts for in vitro fitness. Following this, mixed sex and single sex cultures were set up 

for 10 days using the optimised cell system to evaluate mf release in vitro. All cultured 

parasites were compared against parasites of the same age, freshly isolated from mice, to 

ensure cultured parasites were compared against an appropriate in vivo control. Culture 

media was replenished every 3 days, motility was analysed every day and parasites were 

taken for MTT and qPCR analysis at the time points indicated.  

 Motility scoring and survival analyses 

Parasites were examined for motility daily using a 4-score scale, as described in Chapter 2, 

based on a scoring system devised by Rao and Weil (Rao et al., 2002).  

 MTT viability assessments 

To assess parasite viability quantitatively at end points, the MTT assay was employed. For 

this, parasites were removed from culture and washed in pre-warmed PBS. Parasites were 

then transferred into separate wells of a 96 well plate and incubated with 0.5 mg/ml MTT 

(Sigma) for 2 hours at 37˚C. Following incubation, parasites were washed in PBS, as previous, 

and incubated for 1 further hour with 100% Dimethyl Sulfoxide (DMSO; Sigma) to solubilise 

the blue formazan product. The plate was then analysed using a fluorescent plate reader set 

at 450nm, including a primary shake step. Data were expressed as a percentage change in 

optical density readings from the in vivo control median.  

 DNA extractions 

DNA extraction was performed on individual parasites using a Qiagen QIAmp DNA mini kit. 

In brief, worms were transferred into Eppendorf tubes and incubated overnight at 56˚C with 

ATL buffer and proteinase K to allow initial protein digestion. Following this, ethanol (100%) 
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was added to tubes and samples were subjected to two wash buffer stages with subsequent 

centrifugation steps. In final, DNA was eluted 100 l elution buffer and transferred to 96 well 

plates to be frozen for qPCR analysis.  

 Gene cloning and qPCR 

Plasmids, containing the inserts of amplified B malayi Wolbachia (wBm) surface protein, 

were prepared and stored in glycerol stocks at -20˚C for use as qPCR standards as described 

in Chapter 2. 

For data analysis, Bm wsp copy numbers were averaged and multiplied by the elution volume 

and divided by the volume of DNA sample added to the reaction mixture (1µl). Data were 

represented graphically as log10 of Wolbachia load per adult female.  

 Microfilariae and embryo release profiles 

Microfilariae and embryo release were evaluated at every media change (every 3 days), 

throughout the culture period. To prepare contents for counting, spent media from 

individual wells was centrifuged at 1200rpm for 10 minutes. Supernatants were then 

discarded and the pellets, containing released uterine products, were re-suspended in a 

known volume of PBS. Uterine release products, consisting of mf, early morulae, late 

morulae and embryos, were then evaluated by light microscopy. Data were expressed as the 

number of stage specific embryo products released per female worm. 

 Anti-Wolbachia Drug Screen Validation  

To assess the in vitro culture system’s ability to evaluate anti-Wolbachia drug activity, a drug 

challenge was carried out using the ‘gold-standard’ reference drug, doxycycline. ABBV-4083 

(TylAMac, a gift from Dale Kempf, AbbVie), a novel macrolide compound proven to have anti-

Wolbachia activity (Taylor et al., 2019) was also assessed in comparison to doxycycline. For 

this, parasites were isolated and cultured using the optimised LEC trans-well system. 
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Doxycycline was prepared in ddH2O at a concentration of 5µM, whilst the same 

concentration of TylAMac was prepared in 100% DMSO. Drugs were replenished at each 

media change. An equivalent percentage of DMSO used in the drug groups was added to 

vehicle control groups. Parasites were scored daily for motility and survival, with treatment 

end points at 7 and 14 days. An additional wash-out group, which entailed drug treatment 

for 7 days followed by a 7 day washout period was included in the study to evaluate any 

Wolbachia recrudescence. QPCR analysis, as previous, was employed at endpoints to 

evaluate Wolbachia reductions in response to treatment. 

 Direct-acting Macrofilaricide Drug Screen Validation  

To evaluate the system’s functionality in determining direct acting macrofilaricide activity, 

Flubendazole (FBZ) and Suramin (SUR) (both Sigma) were used as reference drugs whilst 

evaluating the activity of two novel Dihydroxybenzoic (DHB) compounds; OX2083 and 

OX3153 (a gift from Professor David Satelle, University College London). In this study, female 

worms were cultured as previous, before the addition of the compounds made up to a 

concentration of 10 M in DMSO. The equivalent DMSO concentration was added to control 

wells. Parasites were maintained for 14 days in culture with daily motility scoring and an end-

point MTT readout. 

 Statistics 

Data were tested for normal distribution using D’Agostino & Pearson omnibus normality 

tests. Data that passed normality tests were analyzed by one-way ANOVA with Tukey’s 

multiple comparisons tests. Data significantly different from a normal distribution were 

analyzed using Kruskal-Wallis with Dunn’s multiple comparisons tests. Significance was 

defined at alpha <0.05 and analyzed using GraphPad Prism v6.0h. 

Survival curves were compared using Mantel-Cox log-rank tests. 
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3.1. Results 

 Comparison of gerbil, CB.17 SCID and selective cytokine 

knockout infection models in the propagation and long-term 

maintenance of B. malayi adults 

Parasitological readout data from Meriones gerbil (jird), CB.17 SCID and BALB/c IL4R-/-/IL5-

/- mouse B. malayi intra-peritoneal infections were collated from 32 independent 

experiments, spanning between 2012-2018. Length of experimental infections ranged 

between 12-52 weeks Adult worm recoveries were expressed as a percentage of the initial 

BmL3 inoculation into animals, to allow for comparisons across species and strains. The mf 

yields in the peritoneum were normalised to number of female B. malayi worms present, to 

allow accurate comparisons of mf production in different infection models. 

One-way ANOVA and Kruskal-Wallis analyses (with post-hoc pairwise testing) were applied 

to determine significant differences in the parasite recoveries between the above species 

and strains. In terms of total percentage of B. malayi adults recovered, gerbils yielded a 

median 4% of initial inoculate (range = 0-46%) whilst CB.17 SCID and BALB/c IL4R-/-/IL5-/- 

infected mice produced 13% (range = 0-49%) or 12% (range = 0-59%) of initial infectious 

inoculate, respectively (Figure 3.1.A). This equated to a ≥ 3-fold increase in adult filarial yields 

(Kruskal-Wallis statistic = 32.82, P<0.0001 gerbils vs CB.17 SCID or IL4R-/-/IL5-/- mice, Dunn's 

multiple comparisons test). Yields between CB.17 SCID and IL4R-/-/IL5-/- mice were not 

significantly different. When comparing yields of female B. malayi, gerbils yielded a median 

2% (range = 0-35.5%) of initial inoculate whilst CB.17 SCID and BALB/c IL4R-/-/IL5-/- infected 

mice produced 9% (range = 0-42%) and 10% (range = 0-48.7%) of initial infectious inoculate, 

respectively (Figure 3.1.B). This equated to a 4 or 5-fold increase in adult female yields 

(Kruskal-Wallis statistic = 40.83, P<0.0001 gerbils vs CB.17 SCID or IL4R-/-/IL5-/- mice, Dunn's 

multiple comparisons tests). Male B. malayi yields were 1.5% (range = 0-26%) of initial 
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inoculate for gerbils and 3% (range = 0-14%) and 2.3% (range = 0-18%) of initial infectious 

inoculate, respectively for CB.17 SCID and BALB/c IL4R-/-/IL5-/- mice (Figure 3.1.C). This 

equated to a 2 or 1.3-fold increase in adult male adult burdens (Kruskal-Wallis statistic = 

15.35, P<0.001 gerbils vs CB.17 SCID or IL4R-/-/IL5-/- mice, Dunn's multiple comparisons 

test).  
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Figure 3.1. Meta-analysis comparison of filarial adult parasitological yields 12-52 week age-

infections in gerbils, CB.17 SCID or BALB/c IL-4R-/-IL-5-/- mice 

Parasites recovered per strain/species of mice and jirds as (A) total % of Bm, (B) % of female Bm parasites recovered, (C) % of 

male Bm parasites recovered at 12-52 week infections. Each point represents the amount of parasites recovered from a single 

animal.  Horizontal lines represent mean values. Error bars represent standard error of the mean. Significance is indicated as 

****P≤0.0001, ***P≤ 0.001, **P≤0.01, *P≤0.05.  
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These pooled data were then grouped into different age-of-infection time points (12-25 

weeks and >25 weeks) for further analyses to scrutinise whether differences between yields 

in gerbils and immunodeficient mice varied with chronicity of patent infection.  

In the 12-25 week age of infection, the total percentage of B. malayi adults recovered from 

gerbils yielded a median 5.9% of initial inoculate (range = 0-46%) whilst CB.17 SCID and 

BALB/c IL4R-/-/IL5-/- infected mice produced 13% (range = 0-46%) or 14.7% (range = 0-56%) 

of initial infectious inoculate, respectively (Figure 3.2.A). This equated to a >2-fold increase 

in adult filarial yields (Kruskal-Wallis statistic = 12.43, P<0.0020 gerbils vs SCID or IL4R-/-/IL5-

/- mice, Dunn's multiple comparisons test). Yields between CB.17 SCID and IL4R-/-/IL5-/- mice 

were not significantly different. When comparing yields of female B. malayi, gerbils yielded 

a median 3.9% (range = 0-35.5%) of initial inoculate, whilst CB.17 SCID and BALB/c IL4R-/-

/IL5-/- infected mice produced 8% (range = 0-42%) and 11% (range = 0-42%) of initial 

infectious inoculate, respectively (Figure 3.2.B). This equated to a >2-fold increase in adult 

female yields (Kruskal-Wallis statistic = 17.81, P<0.0001 gerbils vs SCID or IL4R-/-/IL5-/- mice, 

Dunn's multiple comparisons test). Male B. malayi yields were 2.3% (range = 0-26%) of initial 

inoculate for gerbils and 3% (range = 0-11%) and 2.7% (range = 0-18%) of initial infectious 

inoculate, respectively, for CB.17 SCID and BALB/c IL4R-/-/IL5-/- mice (Figure 3.2.C). This 

equated to a >1-fold increase in adult male B. malayi burdens (Kruskal-Wallis statistic =19.58, 

P<0.0001 gerbils vs SCID or IL4R-/-/IL5-/- mice, Dunn's multiple comparisons test).  

In the later age of infection (>25 weeks) the total percentage of B. malayi adults recovered 

from mice were again markedly increased in the mouse strains compared to gerbils. More 

specifically, gerbils yielded a median 0.5% of initial inoculation (range = 0.29.5%), whereas 

CB.17 SCID and BALB/c IL4R-/-/IL5-/- infected mice produced 13% (range = 0-49%) and 10% 

(range = 0-59%) of initial inoculates, respectively (Figure 3.2.D). This equated to a >20-fold 

increase in adult filarial yields Kruskal-Wallis statistic = 18.98, P<0.0001 gerbils vs SCID or 
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IL4R-/-/IL5-/- mice, Dunn's multiple comparisons test). Yields between the two mouse strains 

were not significantly different. Upon analysis of female B. malayi, gerbils yielded a median 

0.3% (range = 0-23.8%) of initial inoculate, whilst CB.17 SCID and BALB/c IL4R-/-/IL5-/- 

infected mice produced 9% (range = 0-35%) and 8.5% (range = 0-48.7%), respectively (Figure 

3.2.E). This equated to an >28-fold increase in adult female burdens Kruskal-Wallis statistic 

= 18.98, P<0.0001 gerbils vs CB.17 SCID or IL4R-/-/IL5-/- mice, Dunn's multiple comparisons 

test) (Figure 3.2.F). A similar pattern ensued when adult male recoveries were evaluated. 

Male B. malayi yields were 0.1% (range = 0-5.8) of initial inoculate for gerbils, and 3% (range 

= 0-14%) and 2.3% (range = 0-13.3%) for for CB.17 SCID and BALB/c IL4R-/-/IL5-/- mice, 

respectively. This equated to a 3-fold increase in adult male B. malayi burdens (Kruskal-Wallis 

statistic =19.58, P<0.0001 gerbils vs CB.17 SCID or IL4R-/-/IL5-/- mice, Dunn's multiple 

comparisons test).  
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Figure 3.2. Meta-analysis comparison of filarial adult parasitological yields in separated 12-25 week 

and >25 week age infections in gerbils, CB.17 SCID or BALB/c IL-4R-/-IL-5-/- mice 2 

Total parasite recoveries per strain/species of mice and jirds as (A) total % of Bm in 12-25wk infections (B), % of female Bm 

parasites recovered in 12-25wk infections (C), % of male Bm parasites recovered in 12-25wk infections (D), total % of Bm in 

>25wk infections (E), % of female Bm parasites recovered in >25wk infections (F), % of male Bm parasites recovered in >25wk 

infections. Each point represents amount of parasites recovered from an individual animal. Horizontal lines represent mean 

values. Error bars represent standard error of the mean. ***P≤ 0.001, **P≤0.01, *P≤0.05.  
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 Comparison of gerbil, CB.17 SCID and selective cytokine 

knockout infection models in the propagation of B. malayi 

microfilariae 

In addition to evaluating adult parasite recoveries, the numbers of mf released per female 

worm were evaluated to determine whether any differences in yield across species and 

strain occurred, and if these differed with chronicity of infection (Figure 3.3.). 

Overall, the number of mf released per female worm in gerbils was a median of 7.4x104 

(range = 1.7x103-2.6x105), whilst the number of mf released/female in CB.17 SCID and BALB/c 

IL4R-/-/IL5-/- infected mice was approximately 5-fold and 20-fold lower, with median mf 

releases of 1.5x104 (range = 17.3-6.4x105) and 3.5x103 (range = 45.18 – 9.4x104), respectively, 

per female worm (Kruskal-Wallis statistic = 22.27, P<0.0001 gerbils vs CB.17 SCID or IL4R-/-

/IL5-/- mice, Dunn's multiple comparisons test) (Figure 3.3.A). 

In 12-25 week infections, gerbils yielded a median of 7.4x104 (range = 3.0x104-2.6x105) 

mf/female, whilst CB.17 SCID and BALB/c IL4R-/-/IL5-/- infected mice produced median yields 

of 1.5x104 (range = 17.3-6.34x105) and 4.5x103 (range = 45.18-9.4x104), respectively (Figure 

3.3.B). This equated to a 5-fold and 16-fold decrease in the number of mf released/female in 

CB.17 SCID and IL4R-/-/IL5-/- infected mice, respectively, in comparison to infected gerbils 

(Kruskal-Wallis statistic = 23.89, P<0.0001 Dunn’s multiple comparisons test).  

In >25 week age infections, female B. malayi were continuing to release mf across the two 

mouse strains and gerbils, with no significant differences in mf release between strains or 

species (Figure 3.3.C). Gerbils yielded a median of 1.7x104 (range = 0-4.2x105) mf/female, 

whereas CB.17 SCID and BALB/c IL4R-/-/IL5-/- infected mice produced yields of 5.1x104 (range 

= 1.5x104-2.3x105) and 1.0x104 (range = 2.7x103-9.4x104) mf/female, respectively. This 
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equated to a >0.4-fold decrease in the number of mf released/female in CB.17 SCID and 

IL4R-/-/IL5-/- infected mice, respectively, in comparison to infected gerbils. 

 
Figure 3.3. Meta-analysis comparison of the propagation of microfilariae of 12-52 week age-

infections in gerbils, CB.17 SCID or BALB/c IL-4R-/-IL-5-/- mice 

Total number of microfilariae recovered per female B. malayi in gerbils, CB.17 SCID or BALB/c IL-4R-/-IL-5-/- mice across all ages 

of infection (12-52 week) (A), number of microfilariae recovered per female B. malayi in 12-25 week infections (B), number of 

microfilariae recovered per female B. malayi in >25 week age infections (C). Each point represents an individual animal. Bars 

represent median  interquartile range. Significance is indicated as ****P≤0.0001, ***P≤ 0.001, **P≤0.01, *P≤0.05. 
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Table 3.1. Summary of parasitology between gerbils, CB.17 SCID mice and IL-4R-/-IL-5-/- 

mice 

 

 Initial optimisation of an adult B. malayi culture system 

Initial experimentation was conducted to determine the average lifespan of male and female 

B. malayi (Bm) adult parasites in culture following isolations from IL-4R-/-IL-5-/- mice and 

which, if any, mammalian cell type promoted survival. Metabolic activity post-culture was 

compared to parasites freshly isolated from mice as a reference positive control.  

Female or male B. malayi parasites, isolated from IL4R-/-IL-5-/- mice at between 12-25 weeks 

post-infection, were cultured into 6 well plates at a density of 2 parasites/well onto either a 

human adult dermal lymphatic microvascular endothelial cell monolayer (LEC); a human 

kidney epithelial cell monolayer (HEK294), or their subsequent cell media, EGM-2 MV or 

DMEM, respectively. Motility and survival were assessed daily and quantitative viability 

readouts (MTT) were taken at 14 and 28 day time-points (Figure 3.4.A).  

Although survival over the 28 day culture period was not determined to be significantly 

different between culture conditions, by day 21 survival was highest in female B. malayi 

maintained on the LEC monolayer, whereby 95% survived (46/48 females) (Figure 3.4.B). This 

compared with a survival of 78% for female B. malayi maintained on HEK monolayers (38/48 

females) 74% (36/48 females) for female B. malayi maintained on cell-free DMEM 5% FCS 
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culture medium and 68% (32/48 females) for female worms maintained on cell-free EGM-2 

MV culture medium (Mantel-Cox log-rank test, P=0.3875). 

By the end of the culture period on day 28, survival had declined across all culture conditions. 

Female B. malayi maintained on the LEC monolayer had the highest survival, with 29% of 

parasites surviving (8/24 females). Comparatively, 6% of female B. malayi survived on HEK 

monolayers (2/24 females) whilst B. malayi maintained in equivalent cell-free culture 

medium had declined to 5% survival (1/24 females) or 0% survival (0/24 females) for DMEM 

and EGM-2 MV 5% FCS, respectively (Mantel-Cox log-rank test, P=0.3875). 

Regarding motility assessments, surviving female B. malayi cultured on LEC monolayers 

retained on average, a full motility score emulating in vivo isolated filariae, up until day 16 

(Figure 3.4.C). Comparatively, average motility of surviving female B. malayi began to decline 

in other culture conditions from day 12. By statistical analysis of individual female filaria 

motility scores at day 14, it was confirmed that female B. malayi maintained on LEC 

monolayers were significantly higher than those maintained on HEK monolayers, DMEM 

5%FCS and EGM-2 MV 5% FCS culture groups (Kruskal-Wallis statistic = 17.47, P=0.0006 with 

Dunn’s multiple comparisons test) (Figure 3.4.D). 

By the end of the culture period, by day 28, the minority of surviving female B. malayi all 

exhibited a similar decline in motility in all culture conditions, whereby all female parasites 

exhibited a twitching phenotype (Figure 3.4.E). 

In terms of quantitative MTT viability assessments, at 14 days post-culture, female B. malayi 

parasites cultured on the LEC monolayer displayed similar metabolic activity compared to 

freshly isolated in vivo worms, with on average, a non-significant, 15% reduction in MTT 

reductase activity compared to median in vivo control female filariae (median control optical 

density = 0.48) (Figure 3.4.F). In comparison, metabolic activity of female parasites cultured 

on HEK monolayers, DMEM 5%FCS or EGM-2 MV 5% FCS were reduced by 83%, 75% and 
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58%, respectively. The decline in metabolic activity in HEK monolayers versus LEC 

monolayers was significant (Kruskal-Wallis statistic = 11.4, P=0.0098, Dunn’s multiple 

comparisons test). By day 28 of the culture period, viability had diminished by ≥90% in all 

groups compared with freshly isolated adult female filariae (Figure 3.4.G).  
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Figure 3.4. Initial optimisation of female B. malayi cultures for 28 days with and without specific 

human cell monolayers  

Experimental set-up schematic; adult female Bm cultured at 37C, 5% CO2 for 28 days (2/well in 6-well plates) with and without 

the presence of cells with daily survival/motility monitoring and MTT reductase activity taken at day 14 and day 28 end-point 

(A) Kaplein-Meier survival curves across 28 day culture (B), average motility scores of surviving worms over 28 days (C), motility 

score assessments of individual worms at 14 (D), and 28 days (E), MTT viability assessments at 14 days (F) and 28 days expressed 

as percentage change in MTT reductase activity from in vivo control median level. Each point represents a measure from an 

individual adult B. malayi female. Horizontal bars represent either the mean (D-E) or median (F-G). Error bars represent either 

standard error of the mean (D-E) or interquartile range (F-G). ***P≤ 0.001, **P≤0.01,  

Compared to females, male B. malayi parasites cultured under the same conditions 

deteriorated more rapidly during the culture period (Figure 3.5.C). By day 14, survival had 

declined with only 50% (24/48) of males surviving on LEC monolayers. 40% (19/48) survival 

was observed with males cultured on HEK monolayers, whilst 46% (22/48) had survived in 

DMEM 5% FCS and 42% (20/48) survived in EGM-2 MV. By the end of the culture period at 

day 28, 0% survival was apparent in male B. malayi, irrespective of culture condition. No 

differences were apparent across the different conditions when tested with Mantel-Cox log 

rank tests. 

In terms of motility assessments, all culture conditions, with the exception of the LEC 

monolayer, induced a decline in parasite motility early into culture (Figure 3.5.B). By day 14, 

male B. malayi maintained on the LEC monolayer displayed a significantly higher motility in 

comparison to the other culture conditions tested (Kruskal-Wallis statistic = 38.48, P<0.0001, 

with Dunn's multiple comparisons test) (Figure 3.5.D). Motility continued to decline across 

all cultures until the 28 day end-point, where at this point all males had perished (Figure 

3.5.E). 

In terms of quantitative viability assessments at days 14 and 28, B. malayi males across all 

culture conditions had reduced MTT reductase activity of a median of 100% in comparison 
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to the median control group (median control optical density = 0.32) (Figure 3.5.F+G). This 

confirmed parasite death as opposed to merely a periodic loss of motility.  
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Figure 3.5. Initial optimisation of male B. malayi cultures for 28 days with and without specific 

human cell monolayers 

Experimental set-up schematic; adult male Bm cultured at 37C, 5% CO2 for 28 days (2/well in 6-well plates) with and without 

the presence of cells with daily survival/motility monitoring and MTT reductase activity taken at day 14 and day 28 end-point 

(A) Kaplein-Meier survival curves (B), average motility scores (C), individual 14 day motility scores (D), individual 28 day motility 

scores (E), 14 day MTT viability assay (F), 28 day MTT viability assay, expressed as percentage change in MTT reductase activity 

(viability) from in vivo control median level (G). Each point represents a measurement from an individual adult B. malayi male. 

Horizontal bars represent either the mean (D-E) or median (F-G). Error bars represent either standard error of the mean (D-E) 

or interquartile range (F-G). ***P<0.001, **P<0.01. 
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 Evaluation of microfilariae release during culture period of 

female or female+male B. malayi 

In order to scrutinise mf release over the culture period, and evaluate whether mixed sex 

cultures extended mf release, two B. malayi females, or two females and two males were 

placed into individual culture wells on either LEC monolayers or corresponding cell free EGM-

2 MV media. Due to the rapid deterioration of male B. malayi viability in vitro, cultures were 

limited to 10 days. At each time point, released mf derived from cultures were pooled to 

generate an average mf count which was then adjusted for number of female worms (Figure 

3.6). 

Mf release peaked at day 4 in culture except for mixed sex LEC cultures, which peaked on 

day 5. At peak mf production, levels of mf were: 3125 mf/female for female only LEC cultures, 

2200 mf/female for female + male LEC cultures, 2225 mf/female for female only EGM-2 MV 

cultures and 1387 mf/female for female + male EGM-2 MV cultures. When cultured on LEC 

feeder cells, female only cultures were 29% and mixed sex cultures were 37% higher than 

corresponding peak mf production in cell free medium. Post 5 days in culture, mf release 

began to decline in each condition. The cease in mf production occurred more rapidly in 

females cultured in EGM-2 MV, whereby production ceased at day 8 in female only cultures, 

and day 6 in mixed sex cultures. Females cultured on the LEC monolayer exhibited a more 

gradual decline in mf release, with low numbers of mf still being released after 10 days in 

culture (LEC female culture average release 250 mf/female; LEC mixed sex cultures average 

release 150 mf/female).  
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Figure 3.6. mf release per female B. malayi over 10 day mixed sex and single sex cultures 

Average number of microfilariae released per adult female into culture per culture condition; female only LEC cultures, mixed 

sex LEC cultures, female only EGM-2 MV (cell-free) cultures, mixed sex EGM-2 MV (cell-free) cultures, every 2 days. Females 

cultured at 2/well, mixed-sex cultured were 2 females and 2 males/well, both in 6-well plates maintained at 37C, 5% CO2 in an 

incubator. 

 

 Evaluation of a trans-well co-culture system to improve the 

adult female B. malayi culture period 

After primary experiments to evaluate culture length and optimal cell monolayer were 

completed, the use of a co-culture trans-well system was tested for improvements to culture 

longevity sustaining B. malayi female parasite viability (Figure 3.7.A.). LECs were used, as 

previously evaluated to be the optimal cell type for culture, sustaining viability and motility 

comparable to in vivo isolates for a period >14<28 days. LEC monolayers were prepared, as 

previous, and THP-1 human monocyte-derived macrophages, either in a non-polarised state 

or polarised with recombinant (r)IFN- or rIL-4/r13, termed M(naïve), M(IFN-ƴ) or M(IL-

4/13), or an additional monolayer of LECs, were added on top of this layer within a trans-well 

insert (Figure 3.7.B). Parasites were placed between the monolayer and the insert, with end-
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point readouts at day 21. Female B. malayi cultured LEC monolayers were used as 

comparative controls.  

Control LEC cultures (LEC monolayers) supported 100% survival for >16 days in culture 

(Figure 3.7.C). Beyond this point survival decreased slightly, with 88% of female B. malayi 

surviving by the 21 day end-point. In the presence of LEC + M(naïve) cells, parasite survival 

was significantly greater, whereby 100% survival was maintained throughout the study 

(Mantel-Cox log-rank test, P=0.0027). 100% survival was maintained for 15 days in the 

presence of LEC + M(IFN- ƴ) cells, however survival then began to deteriorate, reaching 67% 

survival by the end-point – significantly lower than the other culture conditions. Female B. 

malayi maintained on LEC + M(IL-4/13) cells retained 100% survival for >16 days in culture 

before declining to 96% at day 18 and ending with 80% survival at day 21. 100% survival was 

achieved throughout the 21 day culture in parasites maintained on the LEC+LEC condition – 

significantly greater along with the LEC + M(naïve) condition.  

 LEC monolayers supported full B. malayi motility <8 days although an average motility score 

of 3 was maintained until d21 (Figure 3.7.D). In contrast, female B. malayi cultured in the 

presence of LEC + M(naïve) retained full motility for the duration of the study. B. malayi 

cultured in the LEC + M(IFN- ƴ) group showed the most marked decline in motility, reaching 

an average score of 3 by day 8 of the study which further depleted to a score of 2 on the final 

day. Female worms cultured on LEC + M(IL-4/13) and LEC + LEC insert exhibited identical 

motility patterns, whereby full motility was achieved for 16 days, followed by a decrease to 

an average score of 3 until the end of study at d21. Analysis at endpoint indicated 

LEC+M(naïve) and LEC+LEC cultures supported superior motility compared with all other 

groups (Kruskal-Wallis statistic = 36.27, P<0.0001, with Dunn’s multiple comparisons test) 

(Figure 3.7.E).  
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After assessing viability (MTT reductase activity) using the MTT assay at end-point, B. malayi 

female parasites cultured on control LEC monolayers exhibited an 80% median reduction in 

MTT reductase (metabolic) activity in comparison to the in vivo control, which was set at 0 

(Figure 3.7.F). In the presence of LEC+M(naïve) cells, parasites displayed significantly 

increased metabolic activity compared with the control LEC monolayer group, with a 22% 

median reduction in comparison to the in vivo control. B. malayi females cultured in the 

presence of LEC+M(IFN) cells exhibited a more pronounced reduction in metabolic activity, 

with a median reduction of 69% when compared to those in vivo. Female B. malayi cultured 

in the presence of LEC+ M(IL-4/13) and LEC+LEC displayed median reductions of 26% and 

24%, respectively, compared to in vivo (Kruskal-Wallis statistic = 12.63, P=0.0132, with 

Dunn’s multiple comparisons test).  
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Figure 3.7. 21 day trans-well adult Bm female co-culture system with macrophages or LEC bilayers  

Experimental set-up schematic; adult female Bm cultured at 2F/well in 6-well plates at 37C, 5% CO2 for 21 days with daily 

motility/survival analyses, and end-point MTT reductase activity analysis (A), Macrophage differentiation and co-culture set-up 

schematic, adapted from https://bio-protocol.org/e1638 (B), Kaplein-Meyer survival curves across the 21 day culture (C), 

average motility across the 21d culture (D), individual motility scores at d21 (E,) 21 day MTT reductase viability assay, expressed 

as percentage change in MTT reductase activity (viability) from in vivo control median. Each point represents an average value 

of 10-12 worms (D) or an individual adult female B. malayi (E-F). Horizontal bars represent median values, error bars represent 

interquartile range. ****P≤0.0001, **P≤0.01, *P≤0.05.  
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 In vitro uterine release over a 21 day culture period 

Based on initial analysis of mf release in culture, a full analysis of uterine release contents 

(mf, early morulae ‘pre-pretzel’, late morulae ‘pretzel’ and embryos) from female B. malayi 

cultured on LEC monolayers or LEC co-cultures compared with EGM-2 MV cell-free controls 

were undertaken to evaluate whether culture condition influenced sustained embryogenesis 

(Figure 3.8) Mature mf release peaked after 3 days in culture, significantly higher than late 

morulae stages, for all groups (average: EGM-2 MV;9410, LEC monolayer; 9250, LEC co-

culture; 4500 /female) (one-way ANOVA P<0.0001 with Tukey’s multiple comparisons test), 

however was not significantly different between culture conditions (Figure 3.7.A). By day 7, 

mf release had significantly reduced across all culture conditions (Figure 3.7.B) (average: 

EGM-2 MV, 400; LEC monolayer; 608; LEC co-culture, 204). This trend continued until the 

end of the study (day 21) (Figure 3.7.C), whereby mf released ceased in the LEC co-culture 

group and had reduced to an average of 8/female/ml for the EGM-2 MV and LEC monolayer 

groups. The release of embryos was significantly higher than other embryonic species across 

all groups at day 7 (Figure 3.7.B) (one-way ANOVA P<0.0001 with Tukey’s multiple 

comparisons test) with an 84% and 96% increase from day 3 analysis for EGM-2 MV (average: 

2940/female/ml) and LEC monolayer (average: 5150/female/ml), respectively, and only a 

25% increase for the LEC co-culture group (average:1308/female/ml). There was also an 

increase in the number of pre-pretzel/early morulae stages released from worms in the LEC 

monolayer group (average: 1000/female/ml) which was significantly higher than the same 

stage release from the LEC co-culture group (average: 258/female/ml) (P≤0.001, Kruskal-

Wallis post-test). This increase was followed by a slight decrease at day 21, in which the 

number of embryos released decreased by 6%, 2% and 8% for EGM-2 MV (average: 

1475/female/ml), LEC monolayer (average: 825/female/ml) and LEC co-culture (average: 



CHAPTER 3 

132 

983/female/ml), respectively. The number of embryos released remained significantly higher 

than mf and pretzel stages from day 7 to day 21. A very low proportion of pretzel/late 

morulae stages were released over the course of the culture. The only recorded values were 

those at day 7, in which an average of 66 and 50 /female/ml were released in the LEC 

monolayer and LEC co-culture groups, respectively. 

 
Figure 3.8. 21 day uterine release profiles from cultured female Bm  

Mf, pretzel/late morulae, pre-pretzel/early morulae and embryo release expressed per female at day 3 (A), day 7 (B), day 15 (c) 

and day 21 (D) into culture, after collection of media and enumeration by light microscopy. Error bars represent SEM. 

****P≤0.0001, ***P≤0.001, **P≤0.01, *P≤0.05. One-way ANOVA, Kruskal-Wallis post-hoc test (intra- and inter-groups). 
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 Wolbachia titres in female B. malayi post culture  

The Wolbachia yields within female B. malayi after 7, 14 or 21 day culture were compared 

with levels from parasites immediately retrieved from IL-4R-/-IL-5 mice. After one to two 

weeks in culture, Wolbachia loads had declined by on average 55% of in vivo controls. By 

three weeks, levels had declined by 74.4% (Figure 3.9. and Table 3.2.). 

 
Figure 3.9. Comparison of Wolbachia titres over culture period in relation to in vivo recovered 

parasites 

Comparisons of Wolbachia titres from adult Bm females maintained on LEC+LEC co-cultures at 2F/well in 6-well plates 

maintained at 37C, 5% CO2 at 1 week, 2 week and 3 week time-points, compared against those reared in vivo. Data is wsp copy 

number estimated by QPCR from individual female B. malayi freshly excised from IL-4R-/-IL-5-/- mice or following 1-3 weeks in 

LEC+LEC insert co-cultures. Median and interquartile range values are indicated. Significant differences determined by Kruskal-

Wallis one-way ANOVA with Dunn’s post hoc tests are indicated **P<0.01 and ***P<0.001. 
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Table 3.2. Comparison of metabolic activity and Wolbachia loads between cultured B. 

malayi female worms and single sex in vivo controls 

Condition Median wsp copy number 
per adult female B. malayi (x107) 
(range) 

Median % change  
from in vivo control 

In vivo isolation 3.13 (1.9-4.4) - 

1 week co-culture 1.4 (0.24-8.2) 55.3% 

2 weeks co-culture 1.4 (0.44-4.2) 55.3% 

3 weeks co-culture 0.8 (0.19-3.8) 74.4% 

 

 

Thus far, a 21 day culture period with a trans-well, LEC co-culture ‘bi-layer’ had been defined 

as sufficient to maintain female Bm survival at ≥80% and full motility. However, metabolic 

activity, whilst not significantly different from in vivo isolated females was reduced on 

average by 25% and Wolbachia content declined by between 55-74%. Because mf 

production was not sustained in vitro, the cessation of embryogenesis may have impacted 

on overall metabolic activity and Wolbachia content, compared with freshly isolated, gravid 

female worms. To more accurately interpret whether quantitative measures of metabolic 

activity and Wolbachia post-culture reflected a real decline in viability of somatic tissues with 

impact on Wolbachia titres or merely reflected reduced embryogenesis and Wolbachia 

replication in developing embryos, female-only in vivo implants were utilised as controls.  

Eight mice were implanted with either 10 female and 5 male (positive control), or 10 female 

parasites each and culled for parasite retrieval 14 days later. LEC + LEC insert cultures (n=12), 

were set up in parallel and removed from culture for analyses at the end-point (Figure 

3.10.A).  
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In terms of metabolic activity, no significant differences were determined between mixed 

sex vs female only implantations, or cultured females (Figure 3.10.B). Female only implants 

had an MTT reductase reading 17% lower than those of the mixed sex implants (mixed sex 

average = 0.660.07; female only average = 0.550.05), whilst the cultured parasites were 

24% lower (average = 0.500.07).  

Insufficient numbers of females were retrieved from male + female implants, therefore 

female worms from L3 inoculations were recovered to act as the positive ‘comparator’. 

Wolbachia titres in female only implants were significantly lower (37%) (2.01x107, range = 

2.6x105-3.62x107) than those recovered from mixed sex inoculations (median = 3.27x107, 

range =1.93x107-4.41x107) (Kruskal-Wallis statistic = 0.0320, P<0.05). A reduction of 32% was 

observed in the cultured females (median = 2.2x107, range = 5.68x106-4.17x107), however 

this was not deemed significant (Figure 3.10.C). 
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Figure 3.10. Comparison of metabolic activity and Wolbachia titres between mixed sex vs single sex 

implants and cultured females 

Experimental set-up schematic; mice surgically implanted with female only or male and female adult Bm whilst female Bm set 

up into LEC+LEC trans-well cultures for 14 days with endpoint MTT reductase activity and qPCR Wolbachia titre analyses (A), 

MTT reductase activity of F+M implants, F-only implants and cultured females (B), total wsp copy number of F+M implants, F-

only implants and cultured females (C). Each point represents and individual female Bm. Horizontal bars represent median 

values, error bars represent interquartile range. *** P≤0.001, **P≤0.01, *P≤0.05. 
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 Validation of culture system to screen anti-Wolbachia drugs 

To evaluate the functionality of the optimised LEC + LEC insert culture system as a drug model 

for assessing anti-Wolbachia candidates, the reference drug doxycycline was trialled. 

Doxycycline (DOX) was added to cultures at a physiologically relevant (peak plasma 

equivalent) concentration of 5 µM, as previously determined from in-house PK-PD studies. 

ABBV-4083, a novel orally bioavailable tylosin analogue (“TylAMac”) with proven superior 

anti-Wolbachia activity in vivo compared to DOX against adult B. malayi, was used at 5M to 

discern whether the co-culture system was of use to determine variation in anti-Wolbachia 

activities between classes of drug. Parasites were dosed for either 7 day, 14 day or 7 day plus 

a 7 day washout period (n=12/group). Vehicle control groups were set up in parallel for 7d 

and 14d. Parasites were recovered at the indicated time points to assess Wolbachia loads 

using qPCR (Figure 3.11.A).  

Parasite survival was unaffected throughout the study (Figure 3.11.B). Only slight changes 

were observed in motility, with those in the TylAMac group reducing to a score of 2 by day 

14 (Figure 3.11.C). 

The median Wolbachia load at the end of the 7 day DOX group (median = 5.26x106, range = 

1.21x106-3.46x107) displayed a significant decrease in comparison to the vehicle control 

group (median = 2.3x107, range = 5.10x106-8.19x107, as did the TylAMac group (median = 

3.47x106, range = 2.32x106-9.76x106) (Kruskal-Wallis statistic=22.34, P<0.0001) (Figure 

3.11.D). Of the 7 day doxycycline group, a median reduction of 77% was observed, with 26% 

of parasites reaching the desirable depletion of >90% (Figure 3.11.D). In the case of TylAMac, 

After 14 days of dosing with DOX, there was again a significant decrease in Wolbachia load 

in comparison to the vehicle control group (Figure 3.11.E) (vehicle control median = 1.44x107, 

range = 4.43x106-4.17x107; 14d DOX median = 3.89x106, range = 1.11x106-4.33x107) (Kruskal-

Wallis statistic=22.19, P<0.0001). Here, the median Wolbachia depletion was 73%, with 37% 
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reaching a depletion more than 90% - a greater percentage than those dosed for 7 days. 

Those dosed for 7 days with DOX followed by a 7 day washout period, exhibited a 

recrudescence in Wolbachia populations (median = 6.17x106, range = 6.76x105-1.06x108). 

Here, the median Wolbachia depletion decreased to 57%. Of that population, only 17% 

achieved the >90% depletion level. Contrarily, in the TylAMac washout group, the Wolbachia 

recrudescence was not as marked, with median Wolbachia reductions of 79% in comparison 

to the vehicle control (median = 3.02x106, range = 9.89x105-2.00x107) (Figure 3.11.F). 
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Figure 3.11. Validation of culture system as an A-WOL drug model 

Experimental set-up schematic; adult female Bm cultured at 2F/well in LEC+LEC 6-well trans-well plates with drug for 7 or 14d 

with daily motility/survival analysis and endpoint qPCR Wolbachia readouts (A), kaplein-meyer survival curves across 14 day 

timepoint (B), average motility scores over the course of the drug study (C), 7 day Wolbachia titre readouts (D), 14 day 

Wolbachia titre readouts (E), Wolbachia depreciation summary table (F). Each point represents an average value of 10-12 

worms (C). Each point represents an individual adult female Bm (D-E). Horizontal bars represent median values, error bars 

represent interquartile range. ****P≤0.0001, **P≤0.01, *P≤0.05.  
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 Validation of culture system as to screen anti-nematodicidal 

drugs 

To assess the utility of the system in evaluating direct-acting macrofilaricidal activity, the 

reference compounds Flubendazole (FBZ) and Suramin (SUR) were evaluated at 10 M. 2 

novel DHB compounds, OX2983 and OX3153 were also tested at the same concentration, to 

determine their potency. A DMSO vehicle group was set up in conjunction as a positive 

control. Parasites were assessed daily for motility and survival with an endpoint MTT readout 

to assess metabolic activity as a function of nematodicidal drug activity (Figure 3.12.A). 

Parasites cultured in the vehicle control group retained 100% survival throughout the course 

of the study, as was the case with the OX3153 test compound (Figure 3.12.B). After 12 days 

of drug treatment, parasite survival in the FBZ and SUR groups decreased to 83% and 77%, 

respectively. Survival further decreased to 50% by day 13 with the FBZ, yet remained 

unchanged in the SUR group. Day 13 was also the first day a survival decline was observed in 

the OX2983 group, whereby a decrease to 60% was observed. By the 14 day endpoint, all 

parasites in the FBZ group had perished, whilst 12% and 20% of parasites survived in the SUR 

and OX2983 groups, respectively.  

Regarding motility, parasites treated with FBZ and SUR exhibited the quickest decline, 

decreasing by one motility score every two days, before reducing to an average score of 1 by 

day 6 or 7, respectively (Figure 3.12.C). The DHB test compounds reduced parasite motility 

slower than the reference drugs, with OX3153 reducing parasite motility to an average score 

of 1 at day 14. The OX2983 test compound failed to decrease motility any further than an 

average score of 2, which was observed at day 14. The DMSO control had no effect on 

motility throughout the study. Due to this, motility curves were compared against this group. 

Both FBZ and SUR proved to be statistically significant against the DMSO control, whereas 
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no significance was observed with either of the test compounds (Kruskal-Wallis 

statistic=19.60, P=0.0006).  

Further analysis of the endpoint motility assessments determined all test groups to exhibit a 

significantly lower score than those in the vehicle control group (Figure 3.12.D) (Kruskal-

Wallis statistic=26.36, P<0.0001).  

Following quantitative metabolic activity assessment using the MTT assay, parasites in the 

DMSO control group displayed the highest MTT reductase activity (Figure 3.12.E) (average 

OD reading = 0.43). Those treated with FBZ exhibited significantly lower activity, indicating a 

decrease in viability by 71.8% in comparison to the control group (Kruskal-Wallis 

statistic=33.14, P<0.0001; average OD reading = 0.12). SUR treated parasites displayed a 

reduction in activity by 28.1%, significantly higher than that of the FBZ treated parasites 

(average OD reading = 0.31). DHB test compounds OX2983 and OX3153 displayed reductions 

in activity of 40.8% and 32.2%, respectively, neither of which were deemed significantly 

different from the control. (OX2983 average OD reading = 0.25; OX3153 average OD reading 

= 0.43). 
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Figure 3.12. Validation of culture model as a direct-acting macrofilaricide drug model  

Experimental set-up schematic; adult female Bm cultured at 2F/well in LEC+LEC 6-well trans-well plates with drug for 14d with 

daily motility/survival analysis and endpoint MTT reductase activity analysis (A), Kaplein-Meyer survival curves across drug 

study (B), average motility scores over the course of the drug study (C), day 14 individual motility scores (D), MTT reductase 

activity of drug treated and DMSO control adult female Bm (E). Each point represents an average value of 10-12 worms (C). 

Each point represents the average motility score per well (total n=6) (D-E). Horizontal bars represent average values, error bars 

represent standard error of the mean (D). Error bars represent interquartile range (E). ***P≤0.001, **P≤0.01, *P≤0.05.  
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3.1. Discussion 

In vivo models are heavily relied upon for drug efficacy testing of anti-Wolbachia drugs in 

efforts to eliminate filarial disease. Although some in vitro drug models exist, they are often 

not of the correct life cycle stage and focus primarily on direct-acting macrofilaricides. 

Models existing of the adult stage are only briefly exposed to drugs, and prematurely 

progressed into in vivo screens without extensive assessment. Additionally, most in vitro 

models have not undergone thorough assessment to determine real parasite ‘fitness’ and 

have not been validated against in vivo models. Combined, these issues heavily impact the 

outcomes of in vivo screens, whereby there are discrepancies in translation from in vitro to 

in vivo models, contributing to disappointing success rates, as well as being time consuming, 

costly, and greatly increasing animal usage.  

As there is no system to generate macrofilariae from larval stages in vitro, animal models are 

heavily relied upon to generate parasites. Although Mongolian jirds are an established 

laboratory model of all filarial life cycle stages (Mutafchiev et al., 2014), variation in parasite 

load is high and a high incidence of infection failure rate is observed. This thus requires more 

animals to be infected to compensate. Through an extensive meta-analysis, it was 

determined that immunodeficient mouse strains serve as an improved model for long term 

infections, based on parasitological readouts. It was determined that by using either a SCID 

or BALB/c IL4Rα-/IL5- mouse strain, parasite yields could be increased by 66-90% on average 

and the rate of infection failure was greatly reduced, ultimately reducing the number of 

animals required for parasite generation. Patent infections were confirmed in all animals of 

both strains, with the number of males produced per animal higher in mice than jirds. 

Infection loads remained stable across early and later time points in both mouse strains, 

further justifying the applicability of these strains for use as an improved model for filariasis 

and subsequent drug screening. It was however noted that CB.17 SCID mice often 
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encountered welfare issues post 6 months of infection and occasionally required single 

housing. Thus, it was determined that the BALB/c IL4Rα-/IL5- strain served as a more 

appropriate model for parasite production, particularly with long-term infections, to reduce 

and refine animal usage.  

In efforts to address the issues with current in vitro culture systems, a long-term female Bm 

culture model, capable of supporting worm viability as compared against in vivo recovered 

parasites was developed. Initially, a non-specific human kidney epithelial feeder cell layer 

(HEK) versus one specific to the parasite’s niche habitat (LEC), with their respective cell media 

were evaluated to determine whether a feeder cell layer aided survival of adult B. malayi, 

and if so, was this due to a specific cell type. The comparative survival durations of male and 

female worms were also evaluated. At the 14 day time point, LEC monolayers proved 

superior in aiding female parasite survival and viability, compared to HEK monolayers and 

both media types. DMEM performed better than both EGM-2 MV and HEKs, despite EGM-2 

MV media containing more amino acids and inorganic salts. LECs also appeared to be the 

superior cell type with male Bm culture, although males began to perish earlier into the 

culture period than females. This was confirmed in both the motility scores and survival curve 

data. The female in vitro model was therefore pursued, which was more informative 

considering this sex is the ideal drug target, containing higher Wolbachia yields and 

embryonic stages – with the aim of potential drug candidates to reduce Wolbachia loads 

(>90%) and induce sterility in the females.  

The interaction between filarial parasites and LECs has been well documented. Studies have 

recorded effects of LEC specific gene expression and proliferation in response to parasites, 

which is not apparent with other cell types, during cultures evaluating lymphangiogenesis in 

filarial infection. The effect on cells has been explored, however the interplay focussing on 

the parasites is yet to be recorded (Bennuru and Nutman, 2009).The outcomes of this study 
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suggest longer-term in vitro worm survival is dependent on LEC-specific factors, rather than 

any general feeder cell layer. However, after 4 weeks in culture, parasites from all conditions 

had perished. This diminishment suggests lymphatic dwelling parasites may potentially have 

a naturally limited lifespan in culture. Alternatively, the system could be lacking a specific 

component, or a more complex system involving multiple cell types could be required.  

Female parasites sustained mf release for approximately 10 days, when numbers slowly 

tapered. The potential for in vitro mating and fertilisation, to produce progeny in efforts to 

achieve the life-cycle in vitro, was evaluated by conducting mixed sex cultures, however mf 

release did not persist any further than 10 days. These observations indicate in vitro mating 

and fertilisation is not feasible, however the reasons for this were not explored further. 

Previous studies on brugia and other related helminths have suggested that the 

downregulation of certain genes and enzymes can impact mf and embryo release and 

development (Hewitson et al., 2014). However in this in vitro model, it is hypothesised that 

mf release merely ceases due to a lack of re-fertilisation, due to parasites having comparable 

Wolbachia titres and metabolic activity to those recovered in vivo, which suggests parasites 

are otherwise healthy.  

In light of these observations, a culture extension to 21 days was attempted. For this, a LEC 

co-culture system with the addition of macrophages, differentiated from THP1 cell lines was 

trialled. It was hypothesised that macrophages, and more specifically alternatively -activated 

type macrophages polarised by IL-4 and IL-13, could provide other secreted survival factors 

due to their association in filarial infection, whereby their activation status is linked to the 

secretion of wound healing growth factors, that may be also beneficial for worm survival 

(Babu and Nutman, 2012, Gause et al., 2013). Further, macrophages and other immune cells, 

including peripheral blood mononuclear cells (PBMCs), have already been proven to support 

larval survival in brugia and onchocerca (Turner et al., 2018, Voronin et al., 2019). 
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 It was found that M(IL-4/13) co-cultures enhanced parasite survival from 2 to 3 weeks 

whereas parasites co-cultured with macrophages classically activated with IFN-g, rapidly 

deteriorated in health, potentially mirroring in vivo events. Unpolarised M co-cultures also 

extended survival to 3 weeks. This was potentially due to the macrophages being polarised 

towards an M2-like phenotype, typical of helminth infections, as a result of the cross talk 

between LECs and/or adult female B. malayi. Whilst this was not further explored within the 

scope of these studies, it does illustrate an onward basic biology application of the human 

co-culture system to study the complex interplay between multiple host cells and filarial 

parasite excretory / secretory molecules in vitro. Furthermore, LEC co-cultures in the trans-

well were found to offer the same survival advantage as the unpolarised M and M (IL-

4/13) co-culture systems. This may indicate that the physical environmental changes created 

by an insert and cell bilayer is sufficient to prolong survival. It was noted that the B. malayi 

parasites frequently migrated into the ‘lumen’ between the vertical plastic surface and 

insert. For simplicity, therefore, LEC+LEC co-culture system was selected for further 

validation of the model, as the addition of M2-like, M1-like, or unpolarised M into the 

system offered no significant survival advantage in comparison to LEC trans-wells, and were 

more laborious and costly to set up. It was thus hypothesised that this extended longevity of 

the system when using LEC co-cultures could be due to an advantageous effect of surface 

expression molecules on cells, which may be upregulated in response to the parasites, or 

more simply, the physical contact with worms and the LEC bilayer (Evans et al., 2016). 

However, further research is required to fully elucidate the specific effect of these upon 

parasite longevity in vitro. 

To further evaluate in vitro parasite ‘fitness’, surgical implantation studies were conducted 

in which parasites recovered from the same cohort of donor mice were cultured or implanted 

into recipient mice, to allow for cross comparisons ex vivo. Female-only implants were also 

included to ensure a sex relevant in vivo control and to account for any discrepancies in 
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viability due to the cessation of mating, fertilisation and embryogenesis. To crudely compare 

in vivo fertilisation in female-only versus mixed sex implants, intraperitoneal mf loads were 

also evaluated at endpoint.  

Although no statistical difference was concluded from the mixed sex versus female-only mf 

release post-mortem, a biological trend was observed in that 76% fewer mf/female were 

released from the female-only implant group. The mf release per mouse was variable, as also 

observed with the meta-analysis mf data. Microfilariae release is dependent on multiple 

factors including the time of fertilisation prior to dissection and/or re-implantation the initial 

male:female ratio, all of which contribute to the wide range and variation observed. The 

lower mf release observed in the female-only implants was hypothesised to be due to no re-

fertilisation of the females and the eventual cease of mf release due to a pause in 

embryogenesis, although further research into this area is yet to be studied.  

No significant changes in viability, as determined via MTT reductase activity, were observed 

across any culture groups or implantation groups. It was thus determined that re-fertilisation 

and the subsequent embryogenesis, and the consequent release of uterine products, did not 

impact the overall adult parasite viability. Furthermore, Wolbachia titres were consistent in 

female-only and female + male implants. This suggests the cessation of mf release is due to 

the pause in fertilisation and not due to a decrease in Wolbachia which would hinder 

embryogenesis.  

At this stage, Wolbachia titre analyses were incorporated into the optimisation as a further 

indicator of in vitro fitness, due to the association of Wolbachia with parasite health and 

survival (Taylor et al., 2005a). Wolbachia titres across all groups and time points were within 

40% of in vivo control parasites. High levels of variation in Wolbachia load were observed 

across all groups, including those in vivo. This was to be expected, considering the 2-log 

difference in adult females reported by McGarry et al and various additional in vivo vehicle 
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control drug groups (McGarry et al., 2004a, Hong et al., 2019, Sharma et al., 2016) and the 

fact that adult females contain four hypodermal cords, which may not necessarily be 

populated with equal numbers of Wolbachia. Despite the variation and percentage 

difference in load from the in vivo control, it is important to note that all Wolbachia copy 

numbers in each group across both time points fell within the published range (McGarry et 

al., 2004b, McGarry et al., 2004a). Although no significant differences were concluded 

between any groups in comparison to in vivo titres, it was decided that the LEC + LEC co-

culture system would be progressed forward for subsequent drug screening due the superior 

performance in viability and survival, combined with the encouraging Wolbachia data.  

Prior to drug model validation, uterine release profiles were further analysed in a more 

detailed manner, incorporating embryonic and morulae stages into analysis. A similar trend 

was encountered as previous, whereby mf release was observed followed by a steady decline 

which reflected the pause in fertilisation. In tandem, an increase in embryo release was 

observed. It is unclear whether this is a natural process as a response to the pause in 

embryogenesis, or an indication of an embryonic pathway going awry as a result of culture. 

Currently, there is no existing literature detailing the embryogenesis pathway in full, for 

example natural developmental failure rates, so no strong conclusion can be drawn as to 

why this is occurring. As mentioned, stress-related genes have been found to be upregulated 

post-removal from jirds (Ballesteros et al., 2016) which is then pro-longed throughout 

culture. An onward application of this system would be to re-implant cultured females into 

mice with male parasites to confirm whether fertilisation resumes. Whilst the release of 

embryos could be a result of stress, both viability readouts and Wolbachia titres suggest 

otherwise, which further evidences the need for additional experimentation, for which this 

system could be applied as a model. Based on these data, the optimised in vitro model will 

be considered unsuitable in determining any effects on uterine release in response to drug 

treatment.  
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It was demonstrated that the optimised LEC co-culture system can be successfully utilised as 

an anti-Wolbachia screening platform; using the ‘gold standard’ reference drug doxycycline, 

and a novel, more potent compound, TylAMac (Hübner et al., 2019, Taylor et al., 2019).  

In an ideal candidate, Wolbachia populations should be reduced to 90%, a threshold level 

prognostic of significant curative efficacy in LF clinical trials (Turner et al., 2006, Mand et al., 

2012), ideally within a 7-day dosing period. With doxycycline, data was concomitant with 

that in vivo, whereby the ‘desired’ level could not be achieved within 7-14-day timeframe. 

This was encouraging, as parasite health reflected that of an in vivo situation and did not 

result in ‘false-positive’ data.  

After a 7-day washout period following the equivalent time dosing, a recrudescence in 

Wolbachia was observed, as would occur in vivo after this treatment time. This was also 

observed, albeit to a lesser extent, with the TylAMac dosed parasites. Contrarily, the 

percentage of parasites reaching >90% depletion levels after washout had increased with 

both drugs, suggesting somewhat further bactericidal activity post dosing, potentially due to 

autophagy. This autophagic activity in response to drug treatment has been previously 

described, primarily in the treatment of tuberculosis (TB) (Kim et al., 2012). Drug induced 

autophagy has also been studied in vivo in Bm infected jirds (Voronin et al., 2012) and 

onchocerca infected cattle (Langworthy et al., 2000). Here, Wolbachia recrudescence was 

observed after short treatments, however with prolonged treatments followed by washout 

periods and the use of autophagy inhibitors/activators, Wolbachia depletion continued post- 

tetracycline treatment due to autophagy activation and could reason why adult worms take 

1-2 years to die with doxycycline treatment. This autophagic response to Wolbachia has also 

been studied in insect cell lines in vitro (Makepeace et al., 2006). However, data differed to 

that in vivo, whereby Wolbachia recrudescence was not noted, yet Wolbachia populations 

continued to decline after brief exposure of drug – a phenomena which does not occur after 
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brief exposure in vivo. Due to the recrudescence of Wolbachia within the co-culture in vitro 

model and the speculated activation of autophagy, this model could provide a more 

‘representative’ model for study autophagy than the cell line, and hence use less animals to 

study this process in the future. Further, as Wolbachia recrudescence was less pronounced 

with TylAMac, and the number of parasites with >90% Wolbachia depletion was higher than 

with doxycycline, it may suggest that TylAMac could be a more effective ‘autophagy 

activator’ than doxycycline, although further research is required to fully elucidate this, for 

which this culture system could be a model for.  

The optimised in vitro system was also confirmed to be an effective model in determining 

direct-acting macrofilaricide activity. Despite flubendazole having proven activity after 5 days 

of dosing in vivo (Mackenzie and Geary, 2011, Geary et al., 2019, Zahner and Schares, 1993), 

parasites were dosed in vitro for 2 weeks to fully exploit the longevity of the system and to 

evaluate efficacious durations of the novel compounds. This was also the longest time the 

activity of FBZ has been explored in vitro, due to the short-comings of previous in vitro 

systems, and hence the full in vitro efficacy of FBZ was undetermined prior to this study. FBZ 

was more effective than SUR in reducing parasite viability in comparison to control treated 

parasites and thus, the 2 novel compounds were compared against FBZ. Although both novel 

compounds had published activity against Trichuris larval stages in vitro (Partridge et al., 

2017) to reduce infectivity when then administered to mice, in this Bm system, parasites 

were dosed at concentrations 10 times lower to remain within physiological concentrations, 

whilst comparable with efficacious doses of FBZ with the future aim to develop into pre-

clinical testing, rather than an environmental approach as with Trichuris. It was determined 

the compounds exhibited a slower activity than FBZ. However, this may be beneficial as an 

alternative direct-acting macrofilaricide and to avoid the risk of severe drug reactions in 

response to rapid parasite killing. These data therefore illustrate that the LEC co-culture 

system is capable in evaluating direct-acting drug activity as exhibited using reference drugs 
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such as FBZ, whilst discerning activity of unknown compounds that may have greater potency 

than reference drugs. It must be noted however, that the activity of compounds requiring 

the host immune system may not be highlighted within this model.  

With the likeness to in vivo parasites confirmed and in vitro drug studies mirroring those 

conducted in vivo, there is confidence that this in vitro model serves as an accurate predictor 

of future anti-Wolbachia candidate and direct-acting macrofilaricide efficacy, and is thus 

capable of reducing and refining the number of animals used for this purpose.  

The 2 to 3 week longevity of the culture system is more than suitable for the identification 

and scrutiny of potential candidates able to reach the essential 7 day treatment time frame 

for A-WOL therapy and assess treatment time frames of potential direct-acting compounds. 

The regrowth of Wolbachia post-treatment within this culture system further emphasises 

the efficiency of the model in supporting the health of the both the worm and Wolbachia, 

and accurately predicting therapeutic outcomes that translate to in vivo studies. The 

Wolbachia recrudescence further exemplifies the downstream applications of the model, for 

example in evaluating autophagy processes and other biological mechanisms within B. 

malayi in vitro.  

This additional step in vitro adult step in the drug screening process bridges the gap between 

identified ‘hits’ from short term cell and mf screens, to in vivo screens targeting adult filariae. 

The optimised adult model thus provides a stage-relevant platform in which false-hits can be 

screened out and not progressed into in vivo screens – ultimately reducing the number of 

animals. Furthermore, efficacy dose testing can be conducted against the correct life cycle 

stage, obviating the need of animals for this purpose.  

Further, as the system is built around lymphatic feeder cell layers, there is potential to utilise 

the model to identify drugs with anti-morbidity properties, whereby cell proliferation can be 

quantified as a ‘first-point’ anti-morbidity screen. 
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In final, the development of this long-term in vitro feeder cell system is important both 

scientifically and from an animal reduction perspective. Potential compounds can now be 

robustly scrutinised prior to enrolment into in vivo studies, reducing the numbers of animals 

used for this purpose. Initial efficacy testing can now be conducted in vitro rather than in 

vivo, further reducing animal usage. Furthermore, the likeness of cultured parasites to those 

in vivo allow for parasite biology studies to take place in vitro, which could previously only 

be conducted in vivo.   
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 Development and validation of pre-clinical 

ultrasound to predict worm burden and treatment efficacy in 

animal models of filariasis 
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4.1. Abstract  

Candidate drugs against filarial disease require testing in pre-clinical models of filariasis. The 

incidence of infection failures and high intra-group variation means that large group sizes, 

and hence large numbers of animals, are required for drug testing. Further, a lack of accurate, 

quantitative adult biomarkers results in protracted time-frames or multiple animal groups 

for endpoint analyses. This chapter evaluates the use of intra-vital ultrasonography (USG) to 

identify B. malayi in the peritonea of gerbils and CB.17 SCID mice, and assess prognostic value 

in determining drug efficacy. It was concluded that parasites could be detected, using the 

signature intra-peritoneal filarial dance sign (ipFDS) with 100% specificity and sensitivity, 

when >5 B. malayi worms were present in CB.17 SCID mice. Semi-quantification of ipFDS 

could predict worm burden >10 with 87-100% accuracy in CB.17 SCID mice or gerbils. USG 

was predictive of macrofilaricidal activity in randomized, blinded studies comparing 

flubendazole, albendazole and vehicle-treated CB.17 SCID mice. Combined, these data 

estimate that pre-assessment of worm burden by USG could reduce intra-group variation, 

obviate the need for surgical implantations in gerbils to ensure a definite starting quantity of 

worms, and reduce total CB.17 SCID mouse usage by 40%. Thus, implementation of USG may 

reduce animal use, refine endpoints and negate invasive sampling techniques for assessing 

anti-filarial drug efficacy.  
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4.2. Introduction  

In all in vivo models of filarial infection, large variation is evident in the adult parasite success 

rate from a unit inoculate per animal. Variation is comprised of both negative binomial 

distribution (skewness) and a low occurrence of non-parasitized animals (where inoculates 

have either failed to establish adult infections or where adult infections have only transiently 

established). Currently, accurate quantitative biomarkers of present adult infections are 

lacking and thus rodents cannot be assessed for infection status or parasitic load prior to 

enrolment in drug screening. Similarly, due to the lack of accurate markers of present adult 

infection, drug efficacy can only be evaluated at the end-point of the experiment, through 

dissection. To compensate, current screening protocols have long washout durations to 

maximize chances of capturing the ‘true’ efficacy of ‘slow-acting’ macrofilaricides, with 

concomitant risk of reduced survival of remaining adult filariae due to host attrition 

(independent of drug effect) and/or risk of decline in animal welfare. Additionally, multiple 

animal groups are enrolled into drug screens to assess different treatment regimens and 

washout periods, as there are currently no ways to determine this longitudinally. These 

drawbacks result in the requirement for large and multiple experimental group sizes, 

increased costs of maintenance, high demand on complex parasite production and 

protracted iterative cycles, in order to provide decision-making efficacy outputs (e.g. to 

support pharmaceutical lead-optimisation programmes).  

Clinical ultrasonography (USG) has been used in tropical medicine to diagnose and assess 

therapeutic success in numerous diseases (Bélard et al., 2016). USG is particularly amenable 

in the detection of macroparasitic tissue infections due to the large size of the pathogens, 

their distinctive motility and/or the frequent formation of a cystic space in the tissues they 

inhabit e.g. echinococcosis, cysticercosis and filariasis. In LF, Amaral et al first described the 
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random thrashing movements of adult W. bancrofti as the filarial dance sign (FDS) in dilated 

lymphatic vessels during scrotal USG (Amaral et al., 1994). W. bancrofti USG detection of FDS 

has been used to diagnose suspected and unsuspected cases of scrotal filariasis (Noroes et 

al., 1996, Faris et al., 1998), and has been an important tool for the evaluation of 

macrofilaricide and anti-morbidity drugs (Dreyer et al., 1996, Dreyer et al., 1995, Chaubal et 

al., 2003, Turner et al., 2010b, Debrah et al., 2007). The reproducible success of USG in 

detecting FDS in bancroftian filariasis has only been reported in the scrotal region in 

microfilariaemic males, with more inconsistent detection in the lymphatics of other 

anatomical locations of microfilaraemic female patients (Mand et al., 2003). Similarly, 

B.malayi, which are smaller than W. bancrofti worms (4 cm versus 10 cm) and do not form 

hydrocoele pathology, have failed to be consistently visualized in microfilariaemic patients 

(Shenoy et al., 2016). O. volvulus adult motility within subcutaneous nodules have also been 

successfully imaged using USG. Nodules have been subjected to USG as a method of 

diagnosis and assessing drug treatment efficacy by determining changes in nodular structure, 

as well as imaging the worm motility within cystic spaces inside the nodules (Homeida et al., 

1986, Poltera et al., 1987, Poltera et al., 1991, Poltera and Zak, 1988, Darge et al., 1994, 

Leichsenring et al., 1990, Mand et al., 2003, Turner et al., 2010a). In a pilot study utilizing 

rodents infected with L. sigmodontis or B. malayi and pre-determined as positive for 

circulating microfilaraemia, the detection of FDS by USG has been demonstrable with more 

reliable detection in the thoracic cavity versus the lymphatic system (Mand et al., 2006). 

Here, we have fully assessed the sensitivity, specificity and prognostic value of USG to detect 

FDS of extravascular B. malayi adult filariae contained within the peritoneal cavity of SCID 

mouse and gerbil preclinical drug screening systems. We demonstrate that USG is highly 

sensitive and specific in the detection of FDS using ‘operator-blinded’ studies and can be 

successfully applied to estimate level of adult worm burden and macrofilaricidal efficacy in 

drug screening experiments. 
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4.3. Scientific and 3Rs Aims 

• Assess whether USG can predict infection burden in experimentally infected 

CB.17 SCID mice and Mongolian gerbils, to enrol animals into drug screening 

protocols; refining animal usage, reducing experimental bias and maximising 

the experimental outputs of in vivo drug studies. 

• Evaluate the limit of sensitivity of USG in detecting worm burden using CB.17 

SCID mice surgically implanted with decreasing numbers of different sex 

parasites. 

• Evaluate the impact of using USG as a longitudinal imaging tool to predict 

treatment efficacy in Brugian filariasis mouse models, using a known 

macrofilaricide and a drug with no macrofilaricidal activity to reduce and refine 

animal usage in anti-filarial drug research. 
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4.4. Materials and Methods 

 Animals  

Male CB.17 Severe Combined ImmunoDeficient (SCID) mice were purchased from Charles 

River UK. Meriones unguiculatus (Mongolian gerbils; jirds) breeding pairs were purchased 

from Charles River, Europe. Breeding and experimental stocks were maintained under 

specific pathogen-free (SPF) conditions at the biomedical services unit (BSU), University of 

Liverpool, Liverpool, UK. Male SCID mice were 6–10 weeks old and weighed 22–26g at start 

of experiments. Male gerbils were 4–6 months old and weighed 80–100 g at start of 

experiments. All experiments were approved by the ethical committees of the University of 

Liverpool and Liverpool School of Tropical Medicine (LSTM) and conducted under Home 

Office Animals (Scientific Procedures) Act 1986 (UK) requirements.  

  Brugia malayi parasite production 

The life cycle of Brugia malayi (Bm) was maintained in mosquitoes and Mongolian gerbils as 

described in Chapter 2.  

  Experimental Infections 

For BmL3 infection, male Mongolian gerbils, aged 4–6 months, were injected via the 

intraperitoneal route, with either 50 or 400 highly motile BmL3. Male CB.17 SCID mice aged 

6–10 weeks, were injected with 100 BmL3. Animals were left for between 12 and 25 weeks 

post-infection to allow infections to proceed to the chronic adult stage. 

 Surgical implantation of Adult Brugia malayi parasites 

Bm adults were collected from infected donor CB.17 SCID mice via peritoneal lavage post-

mortem. Parasites were then separated into male and female, washed with pre-heated 

phosphate buffered saline (PBS, Merck) and collected into the following groups: 4x5 males, 

4x5 females, 4x2 males, 4x2 females, 4x1 male, 4x1 female, for implantation (n=4/group, 
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total n=28). Male CB.17 SCID mice were then placed under surgical anaesthesia using 

isofluorane and received a subcutaneous injection of buprenorphine prior to implantation of 

the above parasite groups into the peritoneal cavity. Implantation was achieved by making 

a small incision into the skin and abdominal cavity in the upper right quadrant and inserting 

parasites into the lower abdominal quadrant using a glass pipette to ensure all parasites were 

maintained in the cavity. The incisions were then re-sutured after implant and animals were 

re-housed as before and monitored closely. The number of parasites inserted into each 

mouse was blinded to the investigator and coded by ear markings for parasite recovery 

analysis at the experimental end point.  

 Preclinical Ultrasonography 

To initially optimise the USG technique, a cohort of 5 CB.17 SCID mice were surgically 

implanted with 13 adult Bm parasites and imaged before and after the addition of sterile 

RPMI media to establish a ipFDS signal. Similarly, 8 gerbils infected with varying numbers of 

BmL3 were imaged before and after 1 and 3 ml of RPMI to optimize the imaging protocol. To 

further assess the accuracy of USG in detecting Bm parasites and to determine limits of 

sensitivity in CB.17 SCID mice, USG was performed blinded one week post-surgery. For this, 

mice and gerbils were anaesthetized with gas isofluorane prior to receiving a 1ml or 3 ml, 

respectively, intra-peritoneal injection of sterile, pre-heated (37 °C) RPMI media (Merck, UK). 

The abdominal cavity was then gently massaged to distribute the media and dislodge 

parasites into fluid pockets to enable easier detection with USG. The abdominal region was 

then shaved and imaged by USG (Sonosite® MTurbo® 8.5 Mz linear probe, ‘small parts’ pre-

set) for 10–15 minutes with thorough investigation of all quadrants for random thrashing 

movements (ipFDS) to confirm the presence of parasitic worms. Parasite load and location 

was semi-quantified using a grid scoring method depending on signal strength and number 

of locations in which parasite masses were detected. Animals were scored as ipFDS- (no FDS 
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detection), ipFDS+ (a single location with a weak signal), ipFDS++ (a weak signal at >1 

locations) or ipFDS+++ (a strong signal at ≥1 locations). For the initial validation of ipFDS, the 

abdomen was firstly imaged using ‘M-mode’ of USG, the time motion display, to accurately 

confirm parasite presence and location due to the recording of very rapid movements 

exhibited by Bm FDS, which are not observed with artefacts of respiration, intestinal 

peristalsis or blood flow. For further validation, the ‘Pulse Wave’ modality was applied to 

depict velocity and flow direction both as a waveform. For this, FDS could be confirmed due 

the random movements and velocity, as opposed to erythrocytes, which instead exhibit a 

constant flow and velocity. For the Colour Flow Doppler, the same parameters were 

examined as a colour map superimposed onto the 2D imaged, whereby flow moving away 

from the probe can by determined in one colour and flow away determined by another. The 

random FDS of B. malayi allows for colours to change more rapidly during video, and more 

flow observed moving away from the probe. 

  Drug treatments 

 Individual mice (unit of replication; n=5/group) were randomized into treatment groups by 

ear notch ID (001, vehicle, 002 ABZ, 003 FBZ etc.) Mice were dosed with either a known 

potent macrofilaricidal parenteral regimen of flubendazole (FBZ); 10 mg/kg daily sc × 5 days, 

a related BZ drug regimen of albendazole (ABZ) not expected to confer macrofilaricidal 

activity, at 5 mg/kg twice daily per oral for 7 days or with vehicle matching ABZ for 7 days. 

USG was carried out by an investigator blinded to treatment to detect presence or absence 

of ipFDS as a prognostic marker of macrofilaricidal outcome of the drug screen at +6 weeks. 

  Endpoint Parasitological assessments 

 At indicated intervals post-USG imaging, animals were humanely culled before adult B. 

malayi were recovered by extensive peritoneal washes with RPMI medium. Parasite 

numbers were sexed and counted by microscopy. Motility scoring was based on a system 
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whereby 3=highly vigorous movements. 2=slow movements, 1=twitching, 0=immotile. 

Metabolic activity of adult B. malayi recovered at necropsy were determined by washing in 

PBS and individually placing in a solution of MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-

Diphenyltetrazolium Bromide) reagent (Merck) in PBS (final concentration 0.5 mg/ml). 

Worms were incubated for 2 hours at 37 °C with 5% CO2. After washing in PBS, adult worms 

were incubated in 100% DMSO for 1 hour at 37 °C with 5% CO2 to dissolve and release the 

blue formazan product. The samples were read at OD 490 nm on a 96-well plate reader 

(Varioskan, Bio-Rad). 

 Statistics 

Raw or log transformed continuous variables were tested for normal distribution using 

D’Agostino & Pearson omnibus normality tests. Variables that passed normality tests were 

analyzed by 1 way ANOVA with Holm-Sidak’s multiple comparisons tests. Variables 

significantly different from a normal distribution were analyzed by Kruskal-Wallis with 

Dunn’s multiple comparisons tests. Differences in frequency of categorical variables were 

assessed by Chi-Square analysis. Significance was defined at alpha <0.05 and analyzed using 

GraphPad Prism v6.0h. Power analysis was undertaken using sample means and standard 

deviations of untreated/vehicle control gerbil or SCID mouse worm burdens combined from 

2–3 independent infection or implantation experiments. With the assumption of 

proportional variation, sample size was calculated for drug efficacy effect sizes of 70% or 90% 

with a statistical power (1-ß) of >75 < 90% with alpha set at 0.05 using a two-sample T test 

(Russ Lenth PiFace Applet): 
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4.5. Results 

 Optimization and characterization of intra-peritoneal FDS 

detection 

Initial experimentation was undertaken to optimize the detection of adult B. malayi FDS 

within the peritoneum. B. malayi immature adult stages were aseptically isolated from SCID 

mice +6 weeks following infection with 100 L3 ip. Six weeks after B. malayi immature adult 

stages had been surgically implanted into recipient SCID mice (adult filariae = +12 weeks old), 

mice were anaesthetized, orientated in a supine position, abdominal hair removed by 

shaving and abdomen imaged with a Sonosite Mturbo portable USG with 8.5Mz linear probe. 

After a maximum of 15 minutes imaging, ipFDS detection was verified in 2/5 animals (Table 

4.1.). Mice were then injected with 1ml of pre-warmed, sterile RPMI medium ip, the 

peritoneum was gently massaged before re-imaging for a further 15 minutes. After this 

intervention, 5/5 animals had detectable ipFDS signal, most frequently observed in the upper 

right or upper left abdominal quadrants in cystic spaces between the abdominal wall and 

viscera (Table 1A, Figure 4.1.A-C). Similarly, four Mongolian gerbils, that had chronic adult 

infections 3 months post-infection with 400 BmL3, received a 1ml injection before imaging, 

in which no animals scored positively for ipFDS. When a further 2 ml (total of 3 ml) media 

was injected into the peritoneal cavity, 4/4 gerbils had detectable ipFDS (Table 4.1.). 
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 A      B       C 

  
Figure 4.1. USG identification of rodent intraperitoneal filarial dance sign 

Presence of B. malayi worm clusters with rapid motility detected in B mode within cystic spaces between viscera and abdominal 

wall of CB.17 SCID mice (A). Irregular B. malayi motility (filarial dance sign) captured by pulse wave color doppler (B) and pulse 

wave (C). 

 

Table 4.1. Optimisation of intra-peritoneal FDS detection by ultrasound in anaesthetised 

mice or gerbils  

ID ipFDS signal 
 

ipFDS signal 
(+1ml medium 
ip)  

ipFDS signal 
(+3ml medium 
ip) 

n adult Bm 
recovered  
 

SCID 1 - + nd 6 

SCID 2 + + nd 6 

SCID 3 + + nd 7 

SCID 4 - + nd 7 

SCID 5 - + nd 4 

Gerbil 1 - - + 2 

Gerbil 2 - - + 2 

Gerbil 3 - - + 12 

Gerbil 4 - - + 67 

ipFDS = intra-peritoneal filarial dance sign 

*nd = FDS not detected 
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 Sensitivity and specificity of B. malayi adult parasite loads by 

USG in operator-blinded studies 

To assess sensitivity and specificity of USG in the detection of ipFDS, including low level worm 

burdens, CB.17 SCID mice were surgically implanted ip with either 10 female and 5 male 

(n=16), five female, five male, two female, two male, one female or one male B. malayi (all 

n=5 / group). All B. malayi used were +12-13 weeks old sourced from CB.17 SCID donors 

infected with BmL3. A further five SCID mice were submitted to peritoneal surgery and sham 

implantations. Between one and five weeks post-surgery, animals were imaged by USG for 

+15 minutes under anaesthesia following introduction of 1 ml pre-warmed medium and 

peritoneal massage. Mice were imaged in random order, by one of two operators who were 

blinded to group. The following day post-USG imaging, mice were necropsied and numbers 

of motile male and female adult B. malayi enumerated. Table 4.2. details the sensitivity and 

specificity of USG in detecting adult B. malayi parasites. In total, at necropsy, 42/46 mice had 

retained one or more motile B. malayi adults post-implantation. Therefore, combined with 

sham implants, a total of 9 mice were confirmed to lack motile B. malayi. The USG operators 

were able to accurately predict the absence of motile B. malayi in the peritoneum of all 9 

infection negative mice (no false positives; 100% specificity). The operators predicted the 

presence of motile B. malayi in 36/42 mice (6 false negatives; 85.7% sensitivity). When 

examining the false negative rate according to final worm burden at necropsy, the operators 

were able to predict with 100% sensitivity the presence of >5 adult, motile B. malayi. This 

sensitivity dropped to 81% when ≤5 adult parasites were present in the peritoneum. 

Comparing the ability of USG to detect low level (≤5) female vs male implants, the level of 

sensitivity was similar (77%, female implants vs 82%, male implants). USG was reproducibly 

able to detect single motile female (7/9) or male (5/5) B. malayi within the peritoneal cavity 

of mice. 
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Table 4.2. Sensitivity and specificity of USG in determining adult motile B. malayi 

Total adult Bm 
recovered (n) 

Bm 
Females 
(No./mouse) 

Bm males 
(No./mouse
) 

Mice n Mice ipFDS+ Mice ipFDS- 

12 9,9 3,3 2 2 0 

10 9 1 1 1 0 

9 7,7 2,2 2 2 0 

8 8,6,5 0,2,3 3 3 0 

6 4,4,3 2,2,3 3 3 0 

5 3 2 1 1 0 

4 2 2 1 1 0 

2 1 1 1 1 0       

5 5 
 

1 1 0 

4 4,4 
 

2 2 0 

3 3 
 

1 0 1 

2 2,2,2,2 
 

4 3 1 

1 1,1,1,1,1,1,1,1,1 
 

9 7 2       

5 
 

5,5 2 0 2 

4 
 

0 0 0 0 

3 
 

3,3 2 2 0 

2 
 

2,2 2 2 0 

1 
 

1,1,1,1,1 5 5 0 

0 (including 
sham) 

0 0 9 0 9 

      

total Bm+   42 36 6 

total Bm-   9 0 9 

Total  
 

  51 36 15 

sensitivity 
   

85.7% 
 

sensitivity >5 
adult Bm 

   
100% 

 

sensitivity ≤5 
adult Bm 

   
80.6% 

 

sensitivity ≤5 
female Bm 

   
76.5% 

 

sensitivity ≤5 
male Bm 

   
81.8% 

 

specificity 
    

100% 
In order from left to right columns (rows organised by number of worms collected in mice, row gaps indicate a 
different study n=3 studies): Total numbers of adult Bm recovered per mouse (left hand column), number of 
females recovered per mouse (number per mouse separated by comma), number of males recovered per mouse 
(number per mouse separated by comma), total number of mice dissected, number of those mice scoring positive 
for filarial dance sign, number of those mice scoring positive for filarial dance sign. Bottom rows: sensitivity in 
detecting/predicting numbers of worms calculated from the numbers of worms recovered corresponding to the 
filarial dance sign score. 
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 Validation of USG to predict macrofilaricidal activity in 

preclinical drug screening 

A known macrofilaricidal regimen of flubendazole was utilised, compared with a known non-

macrofilaricidal anthelmintic regimen of oral albendazole to test whether USG could 

accurately predict macrofilaricidal activity in live animals during drug screening experiments 

(Halliday et al., 2014, Joseph D. Turner1*, 2017). In both experiments, individual USG 

operators were blinded to drug group and imaging assessments of mice occurred in random 

order. In experiment A, mice were implanted with 10 female and 5 male worms and the USG 

signal was assessed +6 weeks after start of treatment. Necropsies were performed 

immediately after USG to determine parasite worm burden. Metabolic activity and motility 

assessments of surviving female worms were also undertaken (Table 4.3.). Following de-

blinding, ipFDS signal was determined in 8/8 vehicle control treated mice, 8/8 ABZ treated 

mice and 3/9 FBZ treated mice. The frequency of ipFDS detection was significantly lower in 

the FBZ group compared with vehicle or ABZ (P=0.0009). The USG findings were then 

compared with the parasitological readout of the drug screen, at termination (Table 4.3.). In 

all vehicle and ABZ treated animals, motile adult B. malayi were recovered. The frequency of 

infection in FBZ treated mice was significantly reduced (4/9 mice, P=0.0039). Evaluating total 

worm burden, in the vehicle control group, a median of 7 (range 2-12) motile adult B. malayi 

were recovered per mouse. A similar median recovery was evident in the ABZ group, whereas 

in the FBZ treatment group, median worm burden was significantly reduced (P=0.0003) with 

the four mice that remained infection positive containing a single female worm. Further, 

motility assessments ex vivo evaluated that the majority of adult female B. malayi derived 

from vehicle and ABZ groups retained vigorous motility whilst the four B. malayi surviving in 

the FBZ group displayed a significantly reduced moribund motile phenotype (P<0.00001).  
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In experiment B, mice were infected with 100 BmL3 and after adult infections had 

established (+7 weeks), mice were randomised and treatment commenced. Due to the 

success of USG to predict profound macrofilaricidal activity of FBZ immediately before end-

point, in experiment B USG was performed at +2.5 weeks post-treatment, 3.5 weeks prior to 

end-point, in order to evaluate the prognostic potential of ipFDS signal detection in 

predicting macrofilaricidal drug activity. A different USG operator undertook evaluations in 

experiment B. Following de-blinding of treatment groups, USG undertaken at +2.5 weeks 

post-dosing detected ipFDS signal in 5/5 vehicle and ABZ treated mice. A significantly 

reduced frequency of ipFDS, in 1/5 FBZ treated mice, was detected (P=0.0042). At the end-

point, +6 weeks post-dosing, the frequencies of infection positive mice were similar between 

treatment groups (5/5, 5/5 and 4/5) for vehicle, ABZ and FBZ, respectively. However, total 

adult B. malayi worm burden was significantly reduced in FBZ treated animals compared with 

vehicle (median recovery 1 vs 18, P<0.0001), whilst worm burdens in the ABZ group remained 

similar (median worm recovery = 19). In the FBZ group, one mouse had four female worms 

recovered whilst an additional three mice contained a single female B. malayi. Motility 

assessments of recovered adult female worms determined that the majority of B. malayi in 

vehicle and ABZ treatment groups retained vigorous motility whilst the surviving FBZ-treated 

B. malayi displayed significantly reduced and moribund ‘twitching’ motility (P<0.0001). 

Metabolic activity of sampled female worms was also significantly reduced in both drug 

groups vs vehicle but to a more profound extent in the surviving FBZ-treated B. malayi vs 

ABZ-treated worms (P<0.0001). 
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Table 4.3. USG ipFDS detection compared with adult B. malayi parasitological readouts in 

experimental macrofilaricide drug screens 

Drug 
group+ 

USG 
ipFDS+/total 

(weeks 

post-dosing) 

Infection 
status 

(weeks 

post-dosing) 

Median  

B. malayi 
worm burden 

(range,  

total n)  

Median 

Female 

B. malayi 
worm burden  

(range,  

total n) 

Median 

Male  

B. malayi 
worm burden 

(range,  

total n) 

Mean 
Female  

B. malayi 

metabolic 
activity  

(SEM, n 
worms 
assessed) 

Median 

Female 

B. malayi 
motility 
score^ 

(range, total 
n worms 
assessed) 

EXPT A (implant drug screen, USG operator 1) 

Vehicle 8/8  

(6 weeks) 

8/8 

(6 weeks) 

7 

(2-12, 57) 

4.5 

(1-9, 40) 

2 

(0-3, 17) 

0.40, 39 

(0.002) 

3 

(1-3, 39) 

ABZ 8/8  

(6 weeks) 

8/8 

(6 weeks)  

7 

(2-12, 53) 

5 

(0-9, 39) 

2 

(0-3, 14) 

0.48, 39 

(0.07) 

3 

(1-3, 39) 

FBZ 3/9*  

(6 weeks) 

4/9| 

(6 weeks) 

0†  

(0-3, 4) 

0  

(0-3, 4) 

0  

(0-0) 

nd 1œ  

(1-1, 4) 

EXPT B (infection drug screen, USG operator 2) 

Vehicle 5/5  

(2.5 weeks) 

5/5 

(6 weeks) 

18 

(9-23, 85) 

10 

(6-15, 53) 

7 

(3-8, 31) 

0.69, 10 

(0.08) 

3 

(2-3, 10) 

ABZ 5/5  

(2.5 weeks) 

5/5 

(6 weeks) 

19 

(14-21, 93) 

14 

(11-16, 67) 

5 

(3-6, 24) 

0.28∞, 10 

(0.05) 

3 

(2-3, 10) 

FBZ 1/5§  

(2.5 weeks) 

4/5 

(6 weeks) 

1#  

(0-4, 7) 

1  

(0-4, 7) 

0  

(0-0, 0) 

0.01∞, 7 

(0.003) 

1∫ 

(1-2, 7) 

+ ABZ = albendazole 5mg/kg bid per oral x 7d, FBZ = flubendazole 10mg/kg qd sc x 5d 
^ motility score: 3 = vigourously motile, 2 = sluggishly motile, 1 = partial twitching motility, 0 
= immotile 
* Chi-square analysis X2=14.04, df,2 P=0.0009 
|  Chi-square analysis X2=11.11, df,2 P=0.0039 
† Kruskal Wallis 1 way ANOVA 16.09, P=0.0003 (Dunn’s tests: vehicle vs FBZ, P<0.01, ABZ vs 
FBZ, P<0.01) 
œ Kruskal Wallis 1 way ANOVA 18.49, P<0.0001 (Dunn’s tests: vehicle vs FBZ, P<0.0001, ABZ 
vs FBZ, P<0.0001) 
§ Chi-square analysis X2=10.91, df,2 P=0.0042 
# Kruskal Wallis 1 way ANOVA 40.13, P<0.0001 (Dunn’s tests: vehicle vs FBZ, P<0.0001, ABZ 
vs FBZ, P<0.0001) 

∞ 1 way ANOVA F=23.93, P<0.0001 (Holm-Sidak’s tests: vehicle vs ABZ, P<0.001, vehicle vs 
FBZ, P<0.0001, ABZ vs FBZ P<0.05) 
∫  Kruskal Wallis 1 way ANOVA 20.47, P<0.0001 (Dunn’s tests: vehicle vs FBZ, P<0.001) 
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 Application of USG to semi-quantify B. malayi adult parasite 

loads in vivo 

We investigated whether the qualitative signal strength of ipFDS determined by USG could 

be utilised to semi-quantify variation in B. malayi adult worm burden that arises following 

experimental infection with BmL3. Cohorts of CB.17 SCID mice (n=31) or gerbils (n=14) were 

assessed after experimental infection and at time-points following adult parasite 

establishment in the peritoneum. Additionally, a group of 4 uninfected gerbils were 

evaluated (operator blinded to infection status). A semi-quantitative scoring system was 

devised based on number of discreet ipFDS signals in anatomical locations and also apparent 

density of ipFDS signal, with a low-intermediate signal (+/++) inferring a low density of 

parasites in either a single or multiple peritoneal quadrants and a strong signal (+++) inferring 

a dense mass of parasites in either a single or multiple quadrants. At 40 weeks following 

infection, 4/31 mice had no detectable ipFDS signal, 12/31 had a low to intermediate signal 

and 15/31 had a strong ipFDS signal. Total B. malayi worm burden was assessed at +41 weeks 

(Fig. 4.2.A). In 3/4 mice with no ipFDS signal, no adult B. malayi were found. A single, motile 

male B. malayi was isolated from the other mouse in this group. In mice categorised with a 

low-intermediate ipFDS signal, median worm burden was 9.5 (range 3-23) and 50% of the 

group contained ≥10 adult B. malayi. In mice categorised with a high ipFDS signal, median 

worm burden was 19 (range 8-33) and 87% of the group had a worm burden ≥10. The 

difference in worm burden predicted by USG categorisation was significantly different 

between all sub-groups (1way ANOVA F=10.82, P=0.0003, Fig1A). After a period of between 

3-6 months post-infection the cohort of gerbils were subjected to USG and scored as the 

CB.17 SCID study above (Fig. 4.2.B). Of the gerbils examined, 4/4 of the sham infected gerbils 

had no detectable ipFDS. A further 5 gerbils who had received inoculates of L3 were ipFDS 
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negative and were determined to be uninfected at necropsy. Six gerbils were ascribed a 

low/intermediate ipFDS signal and contained a range of 1-2 adult parasites at necropsy. The 

remaining gerbils scoring a strong ipFDS signal contained a median worm burden of 21 

(range12-68). Therefore, in gerbils characterized with a high ipFDS, 100% of the sub-group 

had a worm burden ≥10 adult B. malayi, whereas those characterised with an intermediate 

signal, 0% of animals in the group had a worm burden ≥10 adult B. malayi. 

A      B  

  
Figure 4.2. Semi-quantification of B. malayi worm burden by USG in SCID mouse (A) and gerbil (B) 

drug screening models 

Positive and negative ipFDS and ipFDS signal strength, semi-quantified in terms of number of anatomical locations and density 

(+/++ = low-intermediate signal, +++ = strong signal) compared with worm burdens of motile adult B. malayi determined at 

necropsy in 31 parasitized SCID mice (A) or 18 Mongolian gerbils (B). Horizontal bars represent median values and bars 

represent interquartile range. Percentages in parentheses are numbers of animals in each USG sub-category with a B. malayi 

worm burden ≥10 (above shaded area of graph). Significant differences were assessed by 1 way ANOVA with Holm Sidak’s 

multiple comparison’s test (A) or Kruskal Wallis with Dunn’s multiple comparison’s tests (B). Significant differences are indicated 

*P<0.05, **P<0.01, ***P<0.001. 
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 Evaluation of estimated reductions in animal use for drug 

screening post-implementation of USG assessment 

Data sets of individual adult B. malayi worm burdens derived in multiple preclinical 

experiments in our laboratory were accumulated to accurately determine sample variation. 

Data from experimental infections of gerbils and SCID mice, as well as recovery of adults 

post-surgical implantation in gerbils were assessed (Table 4.4.). From the sample means and 

standard deviation in adult burdens, minimum group sizes were derived to assess with 

>75<90% statistical power a ≥70% or ≥90% reduction in worm burden of an effective 

macrofilaricidal drug. The meta-analysis demonstrated that gerbil infections had increased 

variation in worm burden compared to SCID mice (29.4±33.1, n=43 vs 15.3±8.7, n=50) and 

higher incidence of infection failures (20% vs 10%). Power calculations determined that 

nearly 3-fold more animals would be required if assessing ≥70% efficacy of a drug candidate 

in gerbils vs SCID mice (22 vs 8). As prohibitively consuming in terms of gerbil use and cost, 

the alternative strategy of surgically implanting 20 adult B. malayi into gerbil recipients from 

infected donors was adjudged to markedly reduce variation in resultant adult yields at assay 

endpoint (9.4±4.4, n=11). Whilst this meant that statistical power of assessing ≥70% efficacy 

was achieved with a group size of seven, when taking into account a 1:1 ratio of donors to 

recipients, a total gerbil use per drug test of n=14 would be necessary. We then evaluated 

the potential effect of excluding light infections and/or uninfected animals via USG 

assessment on overall animal use. In gerbils, exclusions of uninfected and low level infections 

would mean that similar total numbers of animals could be used compared with surgical 

implantations, whilst obviating the requirement for invasive surgery, as a beneficial 

refinement to animal welfare (for ≥70% efficacy, 14 animals per group). For SCID mice, 

exclusions of uninfected and low level infections would mean that total animal use per drug 

group tested could be reduced by between 30-40%, depending on required efficacy level 

being evaluated. 
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Table 4.4. Meta-analysis of B. malayi worm burden variation, statistical power and 

hypothetical animal use for preclinical drug screening pre- and post-implementation of 

USG imaging assessment 

 Species 
/ strain 

Model  worm 
burden 
mean±SD  
(sample 
n, expt n) 

n animal / drug 
test  
(>75%<90% 
power)#  

Proportion 
infections 
excluded 
(%) 

minimum animal 
use / 
drug test† 

≥70%  
efficacy 

≥90% 
efficacy  

≥70%  
efficacy  

≥90% 
efficacy 

Pre-USG 
assessment 

Gerbil 400xBmL3 
infection 

29.4±33.1 
(43, 3) 

22 14 0% 22 14 

Gerbil 20xadultBm 
implantation 

9.4±4.4 
(11, 2) 

7 5 - 14 10 

Mouse 
CB.17 
SCID  

100xBmL3 
infection 

15.3±8.7 
(50, 2) 

8 6 0% 8 7 

ipFDS- 
excluded 

Gerbil 400xBmL3 
infection 

37.2±33.1  15 9 20% 18 11 

Mouse 
CB.17 
SCID  

100xBmL3 
infection 

17.0±7.4 
 

5 4 10% 6 5 

ipFDS-
/+/++ 
excluded 
(<10 
adults) 

Gerbil 400xBmL3 
infection 

47.4±31.3 9 6 40% 14 9 

Mouse 
CB.17 
SCID  

100xBmL3 
infection 

19.5±6.0 4 3 25% 5 4 

#statistical power (1-ß,  = 0.05) two sample T test (Russ Lenth Piface Applet) 
†including donor animals (surgical implantations) or animals used but subsequently excluded 
due to USG criteri
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4.6. Discussion 

Intraperitoneal infections of rodents with Brugia spp. are convenient small animal models to 

test activity of candidate filaricidal compounds. However, limitations of the current screening 

models means large numbers of animals are required to gauge with accuracy the efficacy 

level of test compounds. Variation in adult parasite worm burden and the occurrence of 

infection failure in both gerbils and, to a lesser extent, immunodeficient mice, hampers the 

success of screening systems to delineate the true efficacy level of treatments. To 

compensate for variation in worm burden, investigators accommodate large group sizes 

which is costly and increases overall animal use. A second strategy to overcome 

parasitological variation is the surgical transfer of adult Brugia parasites from donor-infected 

animals prior to drug dosing. Whilst this strategy improves accuracy of drug efficacy 

evaluation, it requires an invasive procedure and further increases the number of animals, 

as both recipient and infected donor mice are required. A second limitation of current 

screening systems is that no accurate quantitative biomarker of active infection is available. 

Thus, both initial starting adult biomass and endpoints of drug treatment efficacy are difficult 

to predict. Microfilarial production can be used as a marker of fecund adult infection but is 

not infallible due to occurrence of single sex infections and because mature mf can persist 

long term after the death of adult parasites (half-life~100 days). Further, sampling of mf in 

the peritoneum requires invasive catheter washing under anaesthesia, which can also 

coincidently remove adult parasites, particularly male Brugia. Ultimately, these drawbacks 

mean that animals are either maintained for very long durations (up to 8 months post-drug 

treatment) with the concomitant risk of welfare issues arising, or multiple groups are used 

to sample different time points after treatment, with yet further increases in overall animal 

use. 
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 Previously, USG has been used in the field of tropical medicine primarily as a diagnostic tool, 

and also to assess therapeutic outcomes within the clinical setting. One example is the use 

of USG to detect pathology caused by certain parasites, such as assessing liver fibrosis and 

changes in urinary tract structure due to schistosomiasis (King, 2002). USG has also been 

applied to other diseases, including visceral leishmaniasis and viral haemorrhagic fever, 

whereby pathological changes in different organs can be used to determine disease state 

and therapeutic efficacies In terms of filariasis, USG has been used in the field to detect FDS 

in hydrocele patients and to determine macrofilaricide and anti-morbidity drug activity 

(Amaral et al., 1994, Noroes et al., 1996, Dreyer et al., 1996, Dreyer et al., 1998). To date, 

there has been no literature reported on the use of USG for pre-clinical drug models of 

Brugian filariasis, making this research a novel expansion of the technique to determine 

efficacy of drug candidates and significantly reduce animal usage in this area. 

Ultrasonographic detection of adult Brugia ‘filarial dance sign’ was evaluated to determine 

the efficacy of the tool as a specific adult filarial biomarker to reduce and refine rodent use 

for in vivo filarial drug screening. After optimizing the technique for ipFDS detection in mice 

and gerbils, multiple operator/operator-blinded studies were conducted, determining that 

USG was 100% specific in predicting animals who were infection negative, and 86% sensitive 

in detecting active adult B. malayi infection. This increased to 100% sensitivity when >5 adult 

motile adult parasites were present in the peritoneum. The USG technique could be 

mastered and transferred from one operator to another with minimal amount of training 

and practice and without necessary prior experience of USG. Interestingly, sensitivity of 

ipFDS detection was not significantly different in single sex infections when low numbers of 

either larger, wider female (4–5 cm × 180–230μM) or smaller, thinner male worms (1–2 cm 

× 70–80μM) were evaluated in vivo. Indeed, single male worms were detectable in 100% of 

animals tested. This highlights a remarkable sensitivity of USG to detect adult infection and 

illustrates sensitivity is more related to the rapidity of filarial motility rather than the size of 
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adult worm per se. Reduction in sensitivity of USG detection reduced from 100% in animals 

parasitised with >5 adult worms to 81% in animals containing ≤5 worms. This probably 

reflects that with fewer parasite masses in fewer anatomical locations, a positive ipFDS signal 

is more likely to be missed over the 15 minutes of USG scanning especially if worms are 

situated in smaller cystic spaces surrounding solid tissues. The results indicate the technique 

may be able to predictively detect earlier, smaller life-cycle stages such as juvenile adult 

worms or even fourth-stage larvae, which may have use in determining earlier endpoints of 

drug or immuno-prophylaxis type preclinical studies. It was demonstrated that USG 

detection of motile adult B. malayi could be successfully applied as an early prognostic 

measure of effective macrofilaricidal activity. Using flubendazole injection as a reference 

macrofilaricide, as little as 2.5 weeks after dosing, USG could accurately predict if a rapid-

acting macrofilaricidal drug regimen was significantly efficacious in operator-blinded studies. 

The predictive power of the USG approach was related to both a reduced total adult worm 

burden but also a severely reduced motility phenotype of surviving worms following 

effective drug treatment. Thus, we conclude that ipFDS signal is an accurate predictor of 

whether a drug candidate is likely to deliver significant macrofilaricidal outcome. 

Implementing USG to screen animals post-treatment would therefore potentially reduce the 

overall length of washout post-dosing, thus mitigating against reduced welfare of protracted 

animal experiments and the associated risk of underpowered studies requiring 

reassessment. When imaging on “B mode”, it was possible to infer a semi-quantitative worm 

burden based on the apparent visual mass of worm movement and also the number of 

discreet locations where ipFDS was detected. As well as identifying sham infections and 

infection failures with 100% accuracy, this also enabled USG operators to predict with 

significant accuracy whether an animal contained a low/moderate or high worm burden, 

which when compared with yield of parasites at necropsy was between 87–100% accurate 

at delineating animals with ≥10 adult B. malayi. We evaluated that if implemented prior to 
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randomisation into drug screening experiments, with infection negative and light infection 

animals excluded, this semi-quantitative USG technique would reduce both intra- and inter-

group variation and would thus impact on total numbers of animals required for drug 

screening. For gerbil-specific drug screening experiments, a major benefit of USG evaluation 

would be to negate the necessity of surgically implanting adult parasites from donors to 

recipients without increasing overall animal use. For SCID mouse experiments, animal use 

could be reduced as much as 40%. Further reductions in animal use over and above this 

would be apparent if experimental designs were altered to reflect the requirement of only a 

single time point for end-point analysis, after implementing longitudinal USG assessments. 

In conclusion, USG is a 100% specific and highly sensitive bioimaging technique to detect 

adult Brugia filarial parasites in the peritoneum of infected rodents. The technique can be 

implemented with minimum training. Implementation of USG would be beneficial in terms 

of refining animal experiments (negating the requirement for surgery and invasive sampling) 

and also has the potential to reduce overall animal use by as much as 40% in the context of 

preclinical anti-filarial drug screening.  
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 Development of intra-vital optical bio-imaging of 

fluorescently-labelled filariae to measure treatment efficacy in 

mouse models of filariasis  
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5.1. Abstract 

Pre-clinical filarial models require multiple animal groups for drug screens due to the 

limitations of evaluating drug activity against parasites in real time. The only reliable means 

of determining drug activity against adult stage parasites is by enumeration and subsequent 

molecular analyses, which can only be retrieved by necropsy, whilst the only means of 

predicting severe adverse drug reactions due to rapid killing of microfilariae is via multiple 

invasive sampling; both of which provide only retrospective data. Multiple animals therefore 

need to be enrolled into drug screens to be able to evaluate different pharmacological 

regimes. The work outlined in this chapter details the optimisation of fluorescent dyes to 

stain both microfilarial and adult stage Brugia malayi, to track in vivo using an in vivo imaging 

system (IVIS). A drug challenge was then carried out using the reference fast-acting 

microfilaricide, ivermectin, and the reference direct-acting macrofilaricide, flubendazole, to 

determine whether this optimised fluorescent imaging model would be capable of tracking 

drug activity longitudinally. Microfilariae retained the VivoTag-750 NHS fluorescent dye for 

up to 7 days in vitro with no toxicity – the maximum culture time, and was therefore used 

for the staining of adult parasites. Following intravenous infusion, the tropism of fluorescent 

microfilariae could be tracked for up to 14 days in CB.17 SCID and SCID hairless outbred mice, 

whilst adult worms could be observed in the peritoneum of mice following surgical 

implantation. No significant differences could be determined in drug treated mice versus 

vehicle control mice, in both the microfilariae and adult worm fluorescent imaging models.  
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5.2. Introduction  

Current filarial in vivo drug screening models are time consuming and costly, with the 

majority of models only providing a single time-point readout. In addition, accurate parasite 

enumeration as a measure of drug efficacy currently requires animals to be culled in the case 

of adult worm burdens, or invasive techniques (multiple blood withdrawal or peritoneal 

lavage) in the case of mf enumerations, and provide only retrospective data. There is a 

paucity of validated pre-clinical prognostic indicators of drug efficacy prior to this end-point. 

Further, there is no developed non-invasive pre-clinical method to accurately evaluate 

adverse drug events in response to rapid killing of microfilariae. Thus, such predictions are 

reliant on recurrent invasive serum sampling to determine immunological profiles and/or 

multiple experimental groups to collect sufficient tissues for inflammatory profiling at 

different time points. 

Although immunodeficient mouse strains have been employed to increase parasite burden 

and reduce infection failure rates (Halliday et al., 2014), high numbers of animals are still 

necessary to evaluate multiple treatment time points and different pharmacological regimes.  

By utilising whole animal imaging technologies, animal usage can be significantly reduced as 

the same cohorts can be studied longitudinally, thus eliminating the need for subsets in 

multiple time-course studies. Such examples of these technologies include fluorescent and 

bioluminescent imaging modalities, namely In Vivo Imaging Systems (IVIS); Magnetic 

Resonance Imaging (MRI); Fluorescence Molecular Tomography (FMT); Positron Electron 

Tomography (PET); Computed Tomography (CT); Single-Photon Emission Computed 

Tomography (SPECT); Photoacoustic Imaging (PAI), and have been utilised across an array of 

research fields ranging from cancer and neurology (Wang and Hu, 2012, Wessels et al., 2007) 

to infectious diseases (Andreu et al., 2011), to bacterial infections and multi-drug resistant 

bacteria (Mills et al., 2016). 
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The majority of bioluminescence and fluorescence imaging modalities are focused around 

the concept of using genetically encoded fluorescent or bioluminescent reporters to 

establish a signal. Concepts have further been translated into parasitology, whereby 

bioluminescent transformed species have been fundamental in determining parasite loads 

and dissemination in vivo in Chagas disease (Hyland et al., 2008), Malaria (Amino et al., 2005, 

Franke-Fayard et al., 2006), Echinococcosis (Porot et al., 2014) and Leishmaniasis (Lang et al., 

2005, Millington et al., 2010). Literature concerning fluorescence imaging are scant, primarily 

due to the success in which organisms and cells can be labelled, or transformed, with 

bioluminescence.  

Small animal in vivo imaging is less advanced within helminth research, and transfection and 

genetic modification of helminths are very much in their naivety. One successful approach 

however, has been to exploit the biology of the etiological flatworm of Schistosomiasis. In 

this example, mice were injected with an imaging agent which was then cleaved via enzymes 

abundant within the parasite digestive tract, to produce a fluorescent signal (Krautz-

Peterson et al., 2009, Salem et al., 2010). However, this cannot be applied to filarial 

helminths due to the lack of a functional gut.  

Via fluorescent labelling, parasites and potentially their response to drugs could be 

quantified in vivo. This imaging could significantly reduce animal usage, whereby animals can 

be studied longitudinally, drug efficacy can be determined earlier, and aspects of the immune 

system synergising with therapeutics in parasite killing may be determined without the need 

for invasive sampling, both reducing and refining animal usage.  
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5.3. Scientific and 3Rs aims 

In this chapter, non-targeted fluorescent labelling and tracking of mf or adult B. malayi 

parasites were attempted in vitro and in vivo. In addition, changes in fluorescent signals after 

microfilaricidal or macrofilaricidal drug treatments were evaluated. Specific objectives were 

to: 

• Determine an optimal fluorescent dye capable of staining mf in vitro for 

pronged periods. 

• Optimise a model system to track fluorescently-labelled mf in vivo using IVIS 

technology. 

• Validate imaging of fluorescently-labelled mf model with reference 

microfilaricides to establish bioimaging prognostic markers of therapeutic 

responses in vivo, to allow longitudinal imaging to reduce and refine animal 

usage. 

• Optimise a model utilising surgically-implanted fluorescent-labelled adult 

parasites to monitor treatment responses in vivo to allow longitudinal imaging 

to reduce and refine animal usage. 
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5.4. Materials and Methods 

 Animals 

Male CB.17 Severe Combined ImmunoDeficient (SCID) mice were purchased from Charles 

River UK. Severe Combined ImmunoDeficient Hairless Outbred (SHO) mice were purchased 

from Charles River UK and evaluated for superiority in imaging quality in comparison to the 

‘hairy’ SCID mouse. Breeding pairs were purchased from Charles River, Europe. Breeding and 

experimental stocks were maintained under specific pathogen-free (SPF) conditions at the 

biomedical services unit (BSU), University of Liverpool, Liverpool, UK. Male SCID mice were 

6–10 weeks old and weighed 22–26 g at start of experiments. Male gerbils were 4–6 months 

old and weighed 80–100 g at start of experiments. All experiments were approved by the 

ethical committees of the University of Liverpool and Liverpool School of Tropical Medicine 

(LSTM) and conducted under Home Office Animals (Scientific Procedures) Act 1986 (UK) 

requirements.  

 

Microfilariae Model 

 Brugia malayi parasite production 

The life cycle of B. malayi was maintained in mosquitoes and Mongolian gerbils, as described 

in Chapter 2. Microfilariae (mf) were collected from infected gerbils via catheterisation and 

purified using PD10 column size exclusion chromatography (Amersham). Mf were then 

incubated in phenol red-free RPMI with 1% Pen/Strep and 1% Amp. B at 37˚C until use. 

 in vitro fluorescent staining optimisation 

To determine the optimum dye and concentration to successfully stain mf, a range of dyes 

were evaluated with concentrations ranging from 0-300 M. The dyes and staining details 

were as following: 
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• Alexafluor 546 (Thermo-Fisher): Ex= 535 nm Em= 580 nm reconstituted in 

Dimethylsulfoxide (DMSO) 

• Alexafluor 750 (Thermo-Fisher): Ex=745 nm Em=800 nm reconstituted in DMSO 

• VivoTag-750 (Perkin-Elmer): Ex=745nm Em=800 nm reconstituted in DMSO 

Mf were stained at a density of 10,000 parasites/well in 200 µl phenol red-free Roswell-Park 

Memorial Institute (RPMI) media. Stained mf were then cultured in 96 well cell carrier plates 

with black walls, in order to inhibit the influence of background fluorescence during analysis. 

Plates were protected from light and incubated at 37˚C with 5% CO2 overnight. After 

overnight staining, mf were washed thoroughly 3 times with phenol red-free RPMI to ensure 

removal of any free, or unbound dye. 200 µl of fresh, pre-warmed phenol red-free RPMI was 

then added to each well to support mf throughout the 7-day culture period. Motility was 

scored daily to observe any toxic effects dyes may have had on the parasites. Unstained mf 

were also set-up as controls in parallel to determine any dye-specific toxicity. 

 In vitro imaging  

To determine the fluctuations in fluorescence of the stained mf over time, parasites were 

imaged every 2 days using both the IVIS and a fluorescent plate reader for cross-

comparisons. 

 IVIS image acquisition 

The IVIS system consisted of a cooled charge-coupled device (CCD) camera mounted onto a 

light-tight specimen chamber. The fluorescent excitation light was provided by a halogen 

lamp in combination with appropriate excitation filters. Emission filters were placed in front 

of the camera aperture to allow recording of specific wavelengths of light, depending on the 

emission spectra of the fluorescent profile examined. Optimal filter sets and exposure times 

were initially determined using the filter spectrum analysis tool within the Living Image 



CHAPTER 5 

185 

software. Once optimised, non-specific fluorescence was recorded by using a lower 

wavelength excitation filter and subtracted from original images by using the Image Math 

Tool in Living Image software (version 3.2, Caliper Life Sciences). The corrected image was 

then superimposed onto a greyscale reference photograph taken under low illumination 

using the Living Image software to aid the determination of the anatomical location of the 

signal. Fluorescence was quantified on the raw data before non-specific fluorescence was 

removed, by using the Region of Interest (ROI) tool in the Living Image software, where only 

light emanating from within a specified area was measured. Images were acquired using the 

following settings unless otherwise stated: excitation filter 745 nm and emission filter 780 

nm background excitation filter 465 nm; f-stop 2; binning 4; exposure time 60s. Fluorescence 

intensity was displayed on a pseudocolour spectrum (where dark red represents the lowest 

intensity and yellow the highest) and presented as efficiency, a measurement normalized to 

the incident excitation intensity (efficiency¼radiance of the subject/illumination intensity). 

By displaying fluorescence as efficiency, images taken at different time-points and with 

different exposure times could be directly compared with each other. 

The fluorescence signal for each well was determined by selecting a region of interest (ROI) 

and quantifying as the Total Radiant Efficiency (TRE, [photons/sec]/[μW/cm2]). TRE 

represents the sums of fluorescent pixels within the ROI.  

 in vivo fluorescent microfilariae infusion 

Between 100,000-250,000 mf were stained with VivoTag-750 and infused into the tail vein 

of male CB.17 SCID mice. SHO mice were also infused to evaluate whether there was any 

benefit of using hairless mice for imaging. Sham infusions of phenol-red free RPMI were 

included in the study to account for any background fluorescence. Mice were allowed to 

recover and imaged at 24h, 168h and 336h time-points to confirm experimental success and 
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mf distribution. In parallel, 2 x 20 l tail bleed samples were taken for confirmatory 

parasitology.  

 IVIS fluorescent imaging of stained microfilariae in vivo 

IVIS imaging was conducted at 1h, 24h, 168h, and 336h time-points. For this, mice were 

anaesthetised using isofluorane. Once fully unconscious, mice were transferred to the IVIS 

camera chamber and anaesthesia was maintained using isofluorane, administered through 

individual nose cones. 

 Endpoint cardiac puncture and dissections 

At 336h post-infusion, tail bleeds were taken and imaging was conducting prior to necropsy. 

40µl of blood was removed from the heart via cardiac puncture using a 27-gauge needle, and 

scratched onto a glass microscope slide for parasitological analysis.  

 Mf Giemsa staining and enumeration 

For preparation of slides for mf enumeration, slides were immersed in ddH20 for 3 minutes 

30 seconds, followed by immersion in 100% methanol for 1 minute, before placement into 

coplin jars with 40% giemsa (Sigma) for 45 minutes (Hira, 1977). Following staining, the backs 

of slides were gently rinsed under a tap to remove excess dye and allowed to dry overnight. 

Once dry, slides were examined under a light microscope to identify the now giemsa stained 

mf.  

 In vivo ivermectin drug response imaging study 

Brugia malayi mf were retrieved from jirds, stained, incubated and washed as previously 

described. Once washed, mf were centrifuged at 300 g for 5 minutes and the pellet re-

suspended in 200-400 l phenol-red free RPMI in individual microcentrifuge tubes at a 

density of 250,000 mf/microcentrifuge tube. Meanwhile, ivermectin (IVM) was prepared at 

1 mg/kg in 1% DMSO and the vehicle control was prepared as 1% DMSO in water. Across a 
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range of experiments, CB.17 SCID and SHO mice received tail vein infusions of approximately 

250,000 mf, sham infusions (phenol-red free RPMI) or received an injection of heat-killed mf. 

Mice were allowed several hours to fully recover before IVIS imaging, conducted under the 

parameters previously described to establish baseline signals prior to drug dosing. Mice then 

received either IVM or a vehicle control via oral administration. Mice were imaged again 48h 

post-dosing to determine any changes in fluorescence in response to drug treatment. At this 

point, 20 l tail bleed samples were taken for confirmatory parasitology. Mice were imaged 

and sampled again at the 7-day end-point before necropsy, whereby cardiac punctures were 

taken and, in some cases, organs were excised for ex vivo imaging. 

Adult Model 

 Surgical implantation of fluorescently labelled adult B. 

malayi 

Following the successful staining of mf, adult parasites were excised from BALB/c IL-4R-/--

IL-5-/- IL4/IL5 mice and incubated with 150 M VivoTag-750 overnight. Excess dye was 

removed the following day by washing the parasites in phenol-red free RPMI 3 times. Adults 

were then separated into 10 females and 3-5 males in preparation for surgical implantation 

as described in Chapter 4. 

 In vivo IVIS imaging of adult stage parasites 

After recovering for 2 hours post-surgery, mice were imaged using IVIS, under the previously 

described settings, at baseline (day 1, 2-hours post-surgery), day 2 (24-hours post-surgery 

and first dose), day 6 (24-hours post end-dose, 6 days post-surgery), and day 10 (endpoint, 

10 days post-surgery and start of dosing).  
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 In vivo Flubendazole drug response imaging study 

After a baseline imaging signal had been established, 4 mice received a subcutaneous dose 

of 10 mg/kg flubendazole, prepared in standard suspension vehicle (SSV; 0.5% sodium 

carboxymethyl cellulose, 0.5% benzyl alcohol, 0.4% Tween80, 0.9% sodium chloride), in the 

nape of the neck, whilst the remaining 4 mice received an equivalent volume and percentage 

of vehicle to constitute the control group. Both vehicle control and treatment groups were 

dosed once daily for 5 days. 

 Parasitology analysis 

At necropsy, adult parasites were recovered, sexed and enumerated and their motility and 

viability (MTT assay) assessed to confirm drug efficacy. Mf were also washed out from the 

peritoneal cavity to determine any drug effects on numbers. 

 Adult MTT assay 

For viability analysis, adults were individually placed into wells of a 96-well plate prior to the 

addition of 0.5 mg/ml MTT in PBS for 2 hours at 37 C. After incubation, parasites were 

removed from the plate and submerged into a petri dish of PBS to wash off any excess MTT 

solution. Following this, parasites were transferred to a fresh 96-well plate using forceps, and 

100% DMSO was added for 1.5 hours to solubilise  

 Intraperitoneal mf quantification  

To quantify the number of mf released by adult females in vivo, mf were collected into 15ml 

falcon tubes during dissections. Tubes were centrifuged at 1200 rpm for 10 minutes and the 

supernatant discarded. Pellets were re-suspended in a known volume of RPMI, before 

aliquots were taken for dilutions to enable accurate enumeration using a light microscope. 

Data were presented as average number of mf released/female.  
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 Statistics 

Data were tested for normal distribution using D’Agostino & Pearson omnibus normality 

tests. Data that passed normality tests were analyzed by one-way ANOVA with Holm-Sidak’s 

multiple comparisons tests. Data significantly different from a normal distribution were 

analyzed using Kruskal-Wallis with Dunn’s multiple comparisons tests. Significance was 

defined at alpha <0.05 and analyzed using GraphPad Prism v6.0h. 
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5.5. Results 

 In vitro microfilariae staining and imaging 

To determine an optimal fluorescent stain for mf imaging, Alexafluor-546, Alexafluor-750 

and VivoTag-750 dyes were evaluated using both the IVIS system and a fluorescent plate 

reader (Figure 5.1.A). Alexafluor-546 was selected for optimisation due to previous success 

in staining both mf and larval stage parasites within the laboratory (J. Turner, personal 

communication). Mf stained with Alexafluor-546 emitted a peak signal approximately 10-

fold higher than that of VivoTag-750, however was discounted due to its predicted 

unsuitability in vivo due to emitting at the same wavelength as the gut, which could 

potentially interfere with image analysis. The remaining dyes were of a near-infrared 

wavelength which have previously proven to be optimal for in vivo imaging due to increased 

signal penetration and no background tissue signal overlap. A stronger signal was observed 

with VivoTag-750 stained mf than those stained with Alexafluor-750, and signal reached a 

plateau at 150 M with no significant decrease in signal throughout the 7 day period. The 

peak signal with Alexafluor-750 was 33% lower than that of VivoTag-750 and at a higher 

concentration of 300 M. Thus, VivoTag-750 was progressed forward for in vivo 

optimisation.  

Although not presented, mf were scored daily for motility to ensure no dose-dependent 

changes or toxicity were encountered. Mf retained 100% survival with full motility for the 

full duration across all dye concentrations. 
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Figure 5.1. In vitro microfilariae (mf) fluorescent staining optimisation 

Experimental design schematic; Mf stained overnight with different dyes in phenol red-free RPMI in 96-well plates at 37C, 

stain washed off and plates imaged using the IVIS system and a fluorescent plate reader at days 2, 4 and 7 post-staining.  (A), 

average fluorescence of AF-546 stained (0-300 M) mf at days 2, 4 and 7; average fluorescence of AF-750 stained (0-300 M) 

mf at days 2, 4 and 7; average fluorescence of VT-750 stained (0-300 M) mf at days 2, 4 and 7 (B), Corresponding graphs of 

average fluorescence (C i-iii). 
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 In vivo imaging optimisation 

In ‘proof of concept’ experiments, 250,000 stained mf were infused into the tail vein of a 

CB.17 SCID mouse – a density and strain previously validated for this type of model. SHO 

mice were also included in this study to determine whether the use of a hairless mouse 

improved imaging, alongside a non-infected CB.17 SCID control (Figure 5.2.A). At 24 hrs post-

infection, a widespread signal was observed in both strains, with a more intense signal in the 

cardiothoracic and groin regions, potentially indicating a sequestration or potential 

elimination route (Figure 5.2.B-D). At 7 days post-infection, the widespread signal had 

diminished and was instead focused solely in the cardiothoracic and groin regions. 

Cardiothoracic signals had increased by approximately 12% and 6% in the CB.17 SCID and 

SHO mice, respectively. In contrast, the groin signal had decreased by 50% in SCID mice and 

59% in SHO mice. By the 14 day end point, signals in these regions could still be observed, 

however the cardiothoracic signal intensity had further decreased by 25% and 15% in the 

CB.17 SCID and SHO line, respectively, whilst groin signals had increased by 4% and 6% for 

SCID and SHO mice, respectively. End-point peripheral microfilaraemias (Figure 5.2.E) were 

consistent between both strains, whereas cardiac parasitaemias were 54% higher in SHO 

mice than SCID mice (Figure 5.2.F), as reflected in the fluorescent signal intensity.  
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Figure 5.2 In vivo IVIS imaging optimisation with high yield parasitaemia (250,000 mf 

infused/mouse) 

Experimental design schematic; mf fluorescently stained in vitro, infused i.v. into mice at 250,000/mouse, imaged 24hrs, 7d and 

14d later with corresponding blood sampling for mf enumeration (A), fluorescent IVIS images at baseline, d14 and 7d p.i. From 

left to right = SCID, control, SHO (B), cardiothoracic fluorescent signal (C), groin fluorescent signal (D), cardiac and mf 

parasitaemias at d14 (E).  
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Next, lower density parasite infusions of 100,000 mf were trialled to determine whether 

fluorescent signals could be determined at a lower parasite inoculation and the persistence 

of signal could be evaluated (Figure 5.3.). 

At baseline (24 hours post-infection), no widespread signal was observed in either strains 

(Figure 5.3.B-D). Signals were primarily focussed in the cardiothoracic and groin region - an 

earlier time point than observed with the 250,000 infusions. Instead of the cardiothoracic 

signal increasing at 7 days, the signal had decreased by 9% in the CB.17 SCID line, and 20% in 

the SHO line. Signal decreases were also observed in the groin region, with the CB.17 SCID 

strain exhibiting a 33% decrease in signal, whereas only a 16% decrease was observed in the 

SHO strain. At the end-point, no signal was detectable in the cardiothoracic region, whilst 

the groin signals remained constant. Parasitaemias were consistent with those of the 

250,000 mf infusions (Figure 5.3.E), however in this experiment the fluorescent signals did 

not complement the parasite enumerations. No differences in fluorescent signals were 

observed in either mouse strains and thus it was concluded that either strain could be used 

for subsequent studies, however using the higher parasite density. Due to the CB.17 SCID 

mice already validated as a filarial drug model, this strain was selected. 
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Figure 5.3. In vivo IVIS imaging optimisation with low yield parasitaemia (100,000 mf 

infused/mouse) 

Experimental design schematic; mf fluorescently stained in vitro, infused i.v. into mice at 100,000/mouse, imaged 24h, 7d and 

14d later with corresponding blood sampling for mf enumeration (A), fluorescent IVIS images at baseline, d14 and 7d p.i. 

Baseline from left to right = control, SCID, SHO. 14d + 21d from left to right = SCID, control, SHO (B), cardiothoracic fluorescent 

signal (C), groin fluorescent signal (D), cardiac and mf parasitaemias at d14 (E).  
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 B. malayi microfilaraemic CB.17 SCID mouse ivermectin drug 

response pilot imaging study  

An initial ivermectin microfilaricidal drug treatment response study was undertaken in CB.17 

SCID mice (Figure 5.4). Mice were imaged 48-hours post-infection with 250,000 VivoTag-750 

labelled mf to establish a baseline signal with corresponding peripheral parasitaemias. At this 

point, quantifiable signals were present in the cardiothoracic and groin regions (Figure 5.4.B). 

Mice in the vehicle control group displayed an average signal of 1.76x1093.0x107, whilst 

mice to be treated with IVM displayed an average cardiothoracic signal of 

2.08x1091.75x108, 15% higher than the vehicle control mice (Figure 5.4.C). An 8% difference 

in signal intensity was observed in the groin region (vehicle control average = 

5.82x1085.40x107; IVM average = 5.38x1085.00x106). 48-hours post-treatment, IVM 

treated mice displayed a more widespread anatomical fluorescent signal than the vehicle 

control mice, with a 22% increase in signal in the cardiothoracic region compared to baseline 

(IVM average cardiothoracic signal = 2.66x1091.60x108). This was 25% higher than the 

cardiothoracic signal quantified at 48hrs post-dosing in the vehicle control group (vehicle 

control average cardiothoracic signal = 2.00x1095.50x107), which was 11% higher than that 

at baseline. The groin signal intensity had increased by 10% in the IVM group (average = 

6.02x1086.00x106), whereas only a 2% increase from baseline was observed in the vehicle 

control group (average = 5.95x1086.30x107) (Figure 5.4.D). This equated to only a 1% 

difference between groups. By day 7, cardiothoracic signals had decreased by 22% and 16% 

in IVM and vehicle control groups, respectively (IVM average = 2.18x1097.00x107; vehicle 

control average = 1.71x1092.00x107), equating to a 21% difference between groups. A 

decrease in signal intensity was also observed in the groin region, with decreases of 11% and 

12% for IVM and vehicle control groups, respectively (IVM average = 5.42x1082.90x107; 

vehicle control average = 5.31x1081.90x107), equating to a 2% difference between groups.  
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Peripheral parasitaemias had decreased by 79% at 48-hours post treatment in the IVM group 

(baseline average = 400200; 48hrs post-dose average = 83.3316.67), before declining by a 

further 60% by end-point (average = 33.3333.33) (Figure 5.4.F). In contrast, peripheral 

parasitaemias in the vehicle control group has increased by 42% in comparison to baseline 

(baseline average = 1000; 48hrs post-dose average = 17575), and then increased by a 

further 43% by the end-point (average = 311.188.89) (Figure 5.4.E).  

Cardiopulmonary parasitaemias at end-point were 85% higher in the vehicle control group 

than IVM group (vehicle control average = 4417511375; IVM average = 6500450) (Figure 

5.4.G). This confirmed the expected level of microfilaricidal drug efficacy. 
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Figure 5.4. Pilot IVM drug challenge 

Experimental set-up schematic; fluorescent mf infused i.v. at 250,000/mouse, imaged 48hrs later (baseline), dosed with 1mg/kg 

IVM and imaged 48hrs and 7d (end-point cardiac puncture) with corresponding blood sampling (A), baseline fluorescent 

imaging, Imaging at 48 hours post-dosing of vehicle control (right 2 mice) and IVM-treated (left 2 mice), Imaging at 48 hours 

post-dosing of vehicle control (right 2 mice) and IVM-treated (left 2 mice) (B), ), quantified cardiothoracic signal (C), quantified 

groin signal (D), peripheral microfilaraemias of IVM-treated mice (E), peripheral microfilaraemias of vehicle control mice (F), 

end-point cardiac parasitaemias (G) 
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The pilot SCID IVM drug response imaging study was repeated with a larger sample size (n=5) 

for statistical testing (Figure 5.5). At baseline, a widespread fluorescent signal was observed 

which was quantified in the cardiac and groin regions (vehicle control cardiac mean = 

1.13x1093.84x107, vehicle control groin mean = 1.19x1095.25x107; IVM cardiac mean = 

1.23x1095.30x107, IVM groin mean = 7.73x1083.69x107) (Figure 5.5.B-D). Signals in the 

cardiothoracic region were comparable between groups, however signals quantified from 

the groin region were significantly higher in vehicle control mice (Student’s T-test, P<0.001). 

This was most-likely due to the differences in success rates of parasite infusions. 

The intensity of the groin signal had significantly decreased in the vehicle control group by 

48 hours post-treatment (mean = 7.04x1081.54x108, P<0.001), which then continued to 

decrease until the end of the study (mean = 5.58x1085.25x107). In contrast, the groin signal 

remained fairly consistent in the IVM treated group, with a slight increase at the 48-hour 

post-treatment time-point (mean = 8.18x1083.46x107), followed by a slight decline back to 

approximate baseline signal levels (mean = 7.13x1081.61x108). At the 48 hour post-

treatment time-point, cardiac fluorescent signals had significantly increased in the vehicle 

control group (vehicle control mean = 1.37x1093.03x107; IVM mean = 1.39x1093.70x107, 

Student’s T-test, P<0.001), followed by a significant decrease towards the end of the study 

whereby the signal was significantly lower in the vehicle control group (vehicle control mean 

= 9.24x1081.71x107; IVM mean = 1.18x1097.17x107, Student’s T-test, P<0.05). Peripheral 

microfilaraemias exhibited a significant decrease from baseline (vehicle control mean = 

283.289.13; IVM mean = 283.3117.4) to 48 hours post-treatment in both groups (vehicle 

control mean = 162.574.65; IVM mean = 12.512.5, Student’s T-test, P<0.05), with no mf 

detected by end-point in the IVM group (Figure 5.5.F). Vehicle control microfilaraemias 

continued to decline until the end-point (mean = 87.559.07) (Figure 5.5.E).  
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Cardiopulmonary microfilaraemias were evaluated at end-point (Figure 5.5.F), which 

confirmed a significant decrease in the number of mf from the IVM treated group, signifying 

efficacy (vehicle control mean = 124386312; IVM mean = 1081341.8, Student’s T-test, 

P<0.05).  
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Figure 5.5. CB.17 SCID mouse IVM drug response imaging study A 

Experimental set-up schematic; fluorescent mf infused i.v. at 250,000/mouse, imaged 48hrs later (baseline), dosed with 1mg/kg 

IVM and imaged 48hrs and 7d (end-point cardiac puncture) with corresponding blood sampling (A), fluorescent imaging at 

baseline, 48 hours post-IVM treatment, and 7 day end-point (B), quantified cardiothoracic signal (C), quantified groin signal (D), 

control mice peripheral microfilaraemias (E), IVM-treated mice peripheral microfilaraemias (F), end-point cardiac parasitaemias 

(G). Symbols represent mean vales, error bars indicated SEM. ****P<0.0001, ***P<0.001, P<0.05. 
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 B. malayi microfilaraemic CB.17 SCID mouse ivermectin drug 

response imaging study B 

Due to differences in data between pilot and study A, a further repeat was undertaken in 

SCID mice with the addition of a heat-killed mf group to determine whether any changes in 

fluorescence post-IVM treatment were reflective of a “death signature signal” of VivoTag-

750 labelled mf (Figure 5.6). At the baseline imaging time-point, no signal was determined in 

the cardiothoracic region of mice injected with heat-killed mf (Figure 5.6.B). However, a low 

signal was observed in the groin region (mean = 2.6x1091.62x109). Cardiothoracic signals 

were observed in the vehicle control (average = 6.52x1081.24x107) and IVM groups (average 

= 5.63x1081.46x108), in addition to groin signals (vehicle control average = 

1.09x1092.99x107; IVM average = 1.52x1091.93x108), as observed in previous studies 

(Figure 5.6.B-D). By the 48 hour time-point, groin signals had significantly decreased in both 

the vehicle control and IVM groups (vehicle average = 2.21x1083.85x107; IVM average = 

3.30x1082.08x106, P<0.001), and had also decreased in the group injected with heat-killed 

mf (mean = 3.43x1081.42x108, P<0.001). Cardiothoracic signals had also significantly 

declined in both IVM-treated and vehicle control mice (Figure 5.6.C) (IVM average = 00; 

vehicle control average = 7.44x1077.44x107), whilst no signal could be detected in mice 

injected with heat-killed mf. By the 7-day end-point, the groin signal had increased slightly 

in the vehicle control group, which was significant compared with the 48 hour signal (average 

= 4.76x1088.71x106, Student’s T- test P<0.001). No detectable signal was apparent in the 

groin ROI of the heat-killed mf group (average = 0  0) (Figure 5.6.D), whilst the groin signal 

in the IVM group remained consistent with the 48-hour time-point (average = 

2.86x1086.36x106). End-point cardiothoracic signals in the vehicle control (Figure 5.6.C) and 

IVM groups were determined to be significantly higher than the heat-killed mf group, 
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however no significant differences were determined between the IVM and vehicle control 

groups (one-way anova with Tukey’s multiple comparisons test P<0.001).  

In terms of parasitology, peripheral parasitaemias were comparable between the vehicle 

control and IVM groups at baseline, prior to IVM administration (vehicle control average = 

370100.7; IVM average = 478231), whilst no circulating mf were detected in the heat-

killed group (Figure 5.6.E). Microfilaraemic levels in the IVM group sharply decreased to 0 by 

48 hours, and a decrease was also observed in the vehicle control group (average = 

11050.99) which then plateaued until the end of the study (average = 93.3347.9). Post-

mortem cardiac parasitology analyses confirmed the significant reduction of mf in the IVM 

group in comparison to the vehicle control group (Figure 5.6.F) (vehicle control average = 

179652741; IVM average = 8080, P<0.0001), with no mf recovered from the heat-killed 

group). 

Ex vivo imaging was conducted on selected organs to establish whether any fluorescent 

signals could be detected on this level (Figure 5.7). Upon imaging the heart, signals were 

observed in all hearts excised from the vehicle control group (average = 2.86x1074.27x106, 

P<0.0001), whereas no signals were detected in the remaining two groups (Figure 5.7.A-B). 

Signals were also quantified in lungs from vehicle control mice (average = 5.28x1081.87x107, 

P<0.0001), whilst no signals were present in the remaining groups. Splenic signals were 

observed in all mice across all groups, however the signal strength was significantly lower in 

the heat-killed group (vehicle control average = 2.88x1082.43x106; IVM average= 

2.97x1083.38x106; heat-killed average = 1.69x1081.44x106, one-way anova with Tukey’s 

multiple comparisons test, P<0.01). 
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Figure 5.6a CB.17 SCID IVM treatment response imaging experiment B  

Experimental set-up schematic; Experimental set-up schematic; fluorescent live or dead mf infused i.v. at 250,000/mouse, 

imaged 48hrs later (baseline), dosed with 1mg/kg IVM and imaged 48hrs and 7d (end-point cardiac puncture) with 

corresponding blood sampling and end-point ex vivo imaging (A), fluorescent imaging at baseline, 48 hours post-IVM treatment, 

and 7 day end-point (B), quantified cardiothoracic signal (C), quantified groin signal (D), peripheral microfilaraemias (E), end-

point cardiac parasitaemias (F). Symbols represent mean vales, error bars indicated SEM. ***P<0.001, P<0.05;. 
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 Figure 5.6b CB.17 SCID IVM treatment response imaging experiment B – ex vivo imaging 

ex vivo imaging of heart, lungs and spleen from vehicle control mice infused with live fluorescent mf, IVM-treated mice infused 

with live fluorescent mf, and mice infused with heat-killed mf (A), quantification of ex vivo fluorescent signal (B). Horizontal 

bars represent the mean. Error bars represent the SEM ***P<0.001, P<0.05. 
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 CB.17 SCID mouse B. malayi adult implant flubendazole drug 

treatment imaging experiment 

An adult imaging model was trialled to determine whether macrofilaricidal efficacy could be 

detected in vivo using fluorescent imaging modalities (Figure 5.7). Adult B. malayi were 

stained with VivoTag-750 and surgically implanted into the peritoneal cavities of CB.17 SCID 

mice, prior to dosing with the known macrofilaricide, flubendazole (FBZ).  

A strong fluorescent signal was located at the site of implantation in the peritoneal cavity at 

baseline (vehicle control average = 9.033x1091.975x109; FBZ average = 

8.583x1092.474x109). FBZ dosing commenced 2 hours post-surgery. Imaging at 24 hours 

after starting treatment (and implantation) indicated a significant decrease in fluorescent 

signal of the vehicle control group (Figure 5.7.B-D) (average = 2.635x1091.546x108, 

Student’s T-test, P<0.01), which was significantly lower than the signal quantified for the FBZ 

group (average = 4.930x1093.204x108, Student’s T-test, P<0.001). Signals in both groups 

declined further in both groups at 24 hours after the final FBZ dose (6 days post-implantation 

and initiation of dosing) (vehicle control average = 2.26x1093.53x108; FBZ mean = 

1.81x1095.06x108) and remained low at the endpoint of the study at 10 days post-

implantation (vehicle control average = 7.73x1082.54x108; FBZ average = 

2.40x1098.08x108). No fluorescent signal was apparent in FBZ treated naïve mice at any 

time point, indicating the drug did not induce any auto-fluorescence in vivo. 

Post-mortem parasitological analyses revealed a lower recovery in mice treated with FBS 

(Figure 5.7.E). MTT analysis on vehicle control versus FBZ treated parasites concluded a 

significant decrease in the metabolic activity of parasites retrieved from FBZ treated mice 
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(Figure 5.7.F) (P<0.001, Mann Whitney test), and lower numbers of mf recovered ip (Figure 

5.7.G).  



CHAPTER 5 

208 

 



CHAPTER 5 

209 

Figure 5.7. CB.17 SCID mouse B. malayi adult implant flubendazole drug challenge 

Experimental set-up schematic; recovered adult Bm stained with fluorescent dye overnight, washed, and surgically implanted 

into mice peritonea, imaged 2hr post-surgery and dosed with 10mg/kg flubendazole. Imaging was conducted 24hr post first-

dose, 24hr post final-dose and 96hr post final-dose (A), fluorescent IVIS imaging at baseline, 25 hours post initial FBZ dose, 24 

hours post end FBZ dose and end-point (B) quantified fluorescent signal (C), end-point total Bm parasite recovery (D), end-point 

intraperitoneal mf recoveries (E), end-point optical density readings from MTT viability assay on recovered parasites (F), number 

of microfilariae recovered from the peritoneal cavity of mice treated with vehicle or flubendazole (G). Symbols represent mean 

vales, error bars indicated SEM. ***P<0.001, **P<0.01. 
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5.6. Discussion 

The aim of this chapter was to optimise a model to fluorescently label and track microfilariae 

and adult stage parasites in vivo and determine whether the model could be applied to assess 

the efficacy of anti-filarial agents using the reference drugs, IVM and FBZ, for longitudinal 

imaging to reduce and refine the number of animals used for pre-clinical screening.  

Following successful labelling and quantification of fluorescently stained mf in vitro, 

experiments proceeded to the in vivo stage for optimisation. It was established that mf 

sequester in the cardio-pulmonary tissues shortly after infection, as well as potentially 

sequestering in the groin area. However, it could not be established whether this signal in 

the groin was due to the liberation and excretion of free dye from mf or a general signal of 

labelled mf in the superficial blood vessels, due to these being close the skin surface in this 

region. It was also concluded that no benefits arose from using hairless SCID mice (SHO) in 

comparison to CB.17 SCID mice, and hence either could be used for imaging purposes. The 

SCID mouse was therefore selected for subsequent studies due to it being the standard drug 

screening model (Halliday et al., 2014).  

The translation as a model to determine drug efficacy was somewhat challenging. In the pilot 

study, an increased signal was observed in IVM-treated mice, which was hypothesised to be 

either the release of dye due to drug-induced damage of mf cuticle integrity, migration of 

dying or dead mf away from cardiopulmonary tissues and entrapment in multiple capillary 

beds following treatment or absorption of dye-labelled parasite proteins into host tissues 

following their death and disintegration. After subsequent repeats in CB.17 SCID mice, these 

imaging phenomena were unreproducible, with no reproducibly significant difference in 

fluorescent signal observed between control and treated mice relating to the treatment 

efficacy of IVM determined by parasitological enumeration of mf. To further test whether a 
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rapid killing of mf in vivo would be related to a change in fluorescent patterns, fluorescently 

labelled and heat killed mf were perfused into mice. Mice infused with heat-killed mf 

produced a signal in the groin region only, which supported the hypothesis that dead mf 

proteins and unbound dye were excreted via the bladder, particularly as dead mf did not 

sequester in cardiac tissues, as confirmed via parasitological analysis.  

Unfortunately, there was no way to determine whether viable individual mf had retained 

their stain at end-point due to the high NIR wavelength dye used, which was incompatible 

with standard fluorescent and confocal microscope lasers available. Further, signals in both 

drug-treated and control mice dissipated early into the study, despite high parasitaemias at 

end-point, with no increase in groin signal or widespread signal. Ex vivo imaging was then 

carried out to determine whether the lack of signal could be a limit of the IVIS technology. 

Signals were prevalent in the heart and lungs in control mice, indicating stained mf had 

sequestered. However, this could not be detected with whole-body IVIS imaging. Fluorescent 

signals were observed ex vivo in the spleen of all mice, suggesting mf may also be cleared by 

the spleen. This then arose speculation as to whether staining efficiency was dependent on 

the age of the mf, and perhaps some mf of an earlier age were not initially stained, which 

may have affected the whole-body imaging. The mf age could not be controlled for due to 

the requirement of invasive catheterisation of gerbils for mf production, which was 

dependent on the availability of gerbils and the requirements for other experimentation 

within the laboratory.  

Strong fluorescent signals were observed in mice implanted with fluorescently labelled 

adults, however this signal depreciated quickly over the course of the study, potentially due 

to a rapid protein turnover in adult stage B. malayi. After the initial dose of FBZ, the 

fluorescent signal was significantly higher in FBZ treated mice compared to vehicle treated 
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mice. This was potentially due to the excess leakage of dye following drug-induced damage 

to parasites, however these differences were only evident at this time-point.  

At present the infusion of fluorescently labelled mf to image drug responses in vivo is too 

variable with too low long-term signal intensity to be utilised as a robust model for whole 

animal bioimaging. Instead, the technique may be of future use in tracking and quantifying 

filarial mf migrations and tissue tropisms, applying ex vivo bioimaging of dissected tissues. 

However a more sensitive imaging system such as PET or SPECT, or the incorporation of 

multi-modal imaging technologies, may be more appropriate for this purpose in vivo as these 

can provide more precise information discerning specific locations, offer higher resolution 

images, and more observable anatomical changes. 

The use of bioluminescent reagents to evaluate host-parasite interactions, immuno-

pharmacology, and vaccine efficacy offer great potential. However success and sensitivity 

may be vastly improved with the use of immunocompetent mouse strains, whereby more 

components of the immune system can be imaged, which will give a more informed output 

on the mechanisms of how drugs and vaccines may be working, as opposed to immune-

deficient strains whereby some information may be missed.  

The most successful examples of fluorescent and bioluminescent imaging occur in studies 

utilising genetically manipulated parasites, bacteria, and cells, able to express fluorescent 

proteins, or luciferase (Sanz et al., 2008, Sjölinder and Jonsson, 2007, Engelsman et al., 2009), 

genetic manipulation of helminths is very much in its naivety. However a new approach has 

been undertaken. A recent study describes a ‘piggybac’ technique, allowing the manipulation 

of the B. malayi genome to introduce a fluorescent gene into the system, however when 

allowed to develop in vivo, only a small percentage of the progeny displayed this genotype, 

further highlighting the difficulties in this area of research (Liu et al., 2018). This approach 

could significantly improve the fluorescent imaging of filarial parasites in vivo, although 
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further work needs to be conducted to improve the expression of these 

fluorescent/bioluminescent genes to enable the horizontal transfer of the constructs 

throughout the different lifecycle stages, for which CRISPR technology could be utilised.  

Alternatively, tools have been developed in which transgenic parasites are not required. 

Substrates, such as luminol and lucigenin have been developed which target the oxygen 

species released neutrophils and macrophages, respectively. Upon binding, bioluminescence 

is emitted a by-product, allowing for components of the immune system to be imaged in 

vivo, or in-directly, parasites, whereby the immune system can be tracked in response to 

worms. This was demonstrated in the context of filarial infection my Myburg et al (Myburgh 

et al., 2016), albeit with limited success due to issues with inflammation post-surgery. This 

technology could be applied to L3 infections to track immune responses in vivo, and also to 

allow development to adult stages for re-imaging which would negate the issues with 

surgical inflammation. This could then be used to elucidate the immune response to 

parasites in greater detail, and also gives the opportunity for the immune effects, and 

synergy with drugs (immunopharmacology) to be studied, having significant benefits on the 

reduction and refinement of animals.  



CHAPTER 6 

214 

 Concluding remarks, uptake and future work 
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The overall aims of this thesis were to develop novel and alternative methods of anti-filarial 

drug screening which reduce, refine and replace the use of animals in this area of research.  

7.1. Replacement  

As rodent, and canine models (in the context of veterinary filariae) are heavily relied upon 

for the generation of adult-stage parasites due to an inability to maintain the full life-cycle in 

vitro, Chapter 2 focused on the development of an in vitro model to support the whole life-

cycle. More detailed analyses into evaluation of culture systems were incorporated to better 

inform the ‘real’ in vitro parasite fitness, which prior to this work were unknown. 

Unfortunately, parasites still failed to develop post 10 days, even on optimum cell layers, 

with Wolbachia titres comparable to those in vivo. This concludes that an in vitro system can 

not replace the full brugian life cycle. However further work trialling a fatty lymphatic 

composition with different immune cells could be trialled which may extend culture periods.  

The related veterinary filariae, Dirofilariae immitis, displayed more promising results, 

whereby larval stages continued to grow, with high survival rates, for up to 38 days in culture. 

This work is only in its initial stages and would require more robust analyses, as conducted 

with Brugia larvae, to fully determine the success of this culture. If successful, it could allow 

for the screening of novel prophylactic treatments against heartworm, negating the need for 

testing on dogs for the purpose. Further, it could have great implications on the replacement 

of experimentally infected dogs to maintain the life cycle. Instead, mf could be collected from 

naturally-infected client-owned dogs, developed to larvae through mosquitoes, and cultured 

through to adults stages which could then release their own progeny. 

Although the in vitro model did not suffice to replace rodents for the life cycle, the model 

could be utilised to determine activity of anti-Wolbachia compounds against larval stages for 

periods of up to 10 days, hence reducing and replacing the need for rodents for this purpose. 

Currently, the level of Wolbachia depletion to prevent further development is currently 
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unknown. With the likeness to in vivo parasites confirmed, this system could thus be utilised 

to evaluate this, in addition to basic parasite biology in future works.   

7.2. Reduction 

Chapter 3 centred around the reduction of animals in anti-filarial drug screening. A meta-

analysis of long-term infections in gerbils, CB.17 SCID and BALB/c IL4R-/-/IL5-/- mice 

concluded that by using immunodeficient mouse strains, rodent usage can be reduced 2-

fold, with 4-fold lower BmL3 inoculations. It has been noted during routine experiments that 

CB.17 SCID mice often run into welfare issues with increasing age, meaning longer-term 

infections can not always be possible. Using the knockout mouse strain governing ‘Th2’ 

adaptive immune processes, BALB/c IL4R-/-/IL5-/- , these issues are not encountered and 

consequently, animal welfare is improved and refined.  

Leading on from this was the successful development of an adult stage-specific model, that 

demonstrated that parasite survival is more dependent on a host-specific cell line. This 

demonstrates one of the onward applications that the model could be used for; looking at 

the interplay between macrophages, lymphatic cells and parasites. The in vitro model 

provides an additional step in the drug development pipeline, allowing potential compounds 

to be thoroughly scrutinized against the appropriate stage, and therefore may stop the 

progression of sub-optimal candidates progressing into pre-clinical studies, thus reducing 

animals. In vitro maintained parasites have been robustly compared against those in vivo, 

with the health of Wolbachia further exemplified in that recrudescence is observed following 

sub-optimal dosing with doxycycline, as observed in vitro. Due to this, the model has been 

implemented within the laboratory as a model to assess autophagy, and autophagy post in 

vitro drug treatment. Prior to this model, this work would have had to be conducted in vivo 

– further showing how animal usage can be reduced. Lastly, as the model was also validated 

for use as a ‘direct-acting’ compound assay, two potential candidates may have been 
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identified which show activity against adult Bm females, although further efficacy testing will 

be required. 

7.3. Refinement  

The lack of prognostic indicators of drug efficacy in both micro- and macrofilaricidal 

experimental drug efficacy tests in vivo make it difficult to predict end-points where efficacy 

should be assessed. As a result, multiple animal test groups are required to assess efficacy at 

different time-points post-treatment, and several repeat experiments with varying, or 

prolonged time courses are often required. The only method available to give any indication 

on efficacy is through repetitive, invasive blood sampling of microfilariae to establish 

whether compounds have exerted any sterility effects on adult female B. malayi.  

To refine, and reduce, animal usage, ultrasonographic imaging of parasites in the peritoneal 

cavity was evaluated in Chapter 4, followed by the confirmation that ultrasound can be 

applied to assess direct-acting drug activity longitudinally. It was concluded that ultrasound 

can in fact detect and delineate approximate parasite yields in vivo with a sensitivity of >81%. 

This has a remarkable effect on the number of animals enrolled into pre-clinical studies and 

improve the quality of pre-clinical screen data. For example, ultrasound can detect high, low, 

and negative infections and can henceforth be implemented to randomise mice into drug 

testing experiments, ultimately reducing intra- and inter-group variability. Further, 

negatively infected animals can be eliminated from studies – refining the need for 

unnecessary, invasive dosing. The fact that drug efficacy can also accurately be evaluated 

longitudinally means that the need for multiple treatment groups to assess different drug 

washout times can be somewhat negated, and also obviate the need for re-implantation 

surgeries for extended washout periods – both refining animal usage and reducing animal 

use by as much as 40%. The ultrasonographic imaging has since been implemented into pre-

clinical drug screens, whereby animals were imaged prior to treatment group allocation to 
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reduce bias and variability, and obviate the need for un-infected animals to undergo un-

necessary dosing (Taylor et al., 2019). 

Chapter 5 applied the use of bio-imaging tools to longitudinally study in vivo microfilarial 

drug efficacy using fluorescently stained mf and IVIS technology. Whilst mf could be 

visualised in vivo in the cardiothoracic and groin regions, with consistent parasitologies to 

previous mf infusion trajectories within the laboratory, the use as a drug model was 

unreproducible. Further work is required to allow for this system to be utilised as a fully 

functioning model to assess parasite tropisms and drug efficacy. One option would be to trial 

the new genetically modified fluorescent B. malayi within this system to evaluate whether 

signals persist longer and are capable of showing differences in response to drug treatment 

(Liu et al., 2018), potentially using different imaging systems with better depth perception. 

Another option is to use bioluminescent substrates able to indirectly label macrophages and 

neutrophils (Myburgh et al., 2016), amongst other immune/inflammatory components, to 

evaluate immune responses to parasites, look deeper into the immunopharmacology of 

novel and existing drugs, and try to predict/better understand the mechanisms of severe 

adverse drug reactions.  
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