484 research outputs found

    Follow-up of blood-pressure lowering and glucose control in type 2 diabetes.

    Get PDF
    BACKGROUND In the Action in Diabetes and Vascular Disease: Preterax and Diamicron Modified Release Controlled Evaluation (ADVANCE) factorial trial, the combination of perindopril and indapamide reduced mortality among patients with type 2 diabetes, but intensive glucose control, targeting a glycated hemoglobin level of less than 6.5%, did not. We now report results of the 6-year post-trial follow-up. METHODS We invited surviving participants, who had previously been assigned to perindopril–indapamide or placebo and to intensive or standard glucose control (with the glucose-control comparison extending for an additional 6 months), to participate in a post-trial follow-up evaluation. The primary end points were death from any cause and major macrovascular events. RESULTS The baseline characteristics were similar among the 11,140 patients who originally underwent randomization and the 8494 patients who participated in the post-trial follow-up for a median of 5.9 years (blood-pressure–lowering comparison) or 5.4 years (glucose-control comparison). Between-group differences in blood pressure and glycated hemoglobin levels during the trial were no longer evident by the first post-trial visit. The reductions in the risk of death from any cause and of death from cardiovascular causes that had been observed in the group receiving active blood-pressure–lowering treatment during the trial were attenuated but significant at the end of the post-trial follow-up; the hazard ratios were 0.91 (95% confidence interval [CI], 0.84 to 0.99; P=0.03) and 0.88 (95% CI, 0.77 to 0.99; P=0.04), respectively. No differences were observed during follow-up in the risk of death from any cause or major macrovascular events between the intensive-glucose-control group and the standard-glucose-control group; the hazard ratios were 1.00 (95% CI, 0.92 to 1.08) and 1.00 (95% CI, 0.92 to 1.08), respectively. CONCLUSIONS The benefits with respect to mortality that had been observed among patients originally assigned to blood-pressure–lowering therapy were attenuated but still evident at the end of follow-up. There was no evidence that intensive glucose control during the trial led to long-term benefits with respect to mortality or macrovascular events

    Switching to Once-Daily Liraglutide From Twice-Daily Exenatide Further Improves Glycemic Control in Patients With Type 2 Diabetes Using Oral Agents

    Get PDF
    OBJECTIVETo evaluate efficacy and safety of switching from twice-daily exenatide to once-daily liraglutide or of 40 weeks of continuous liraglutide therapy.RESEARCH DESIGN AND METHODSWhen added to oral antidiabetes drugs in a 26-week randomized trial (Liraglutide Effect and Action in Diabetes [LEAD]-6), liraglutide more effectively improved A1C, fasting plasma glucose, and the homeostasis model of β-cell function (HOMA-B) than exenatide, with less persistent nausea and hypoglycemia. In this 14-week extension of LEAD-6, patients switched from 10 μg twice-daily exenatide to 1.8 mg once-daily liraglutide or continued liraglutide.RESULTSSwitching from exenatide to liraglutide further and significantly reduced A1C (0.32%), fasting plasma glucose (0.9 mmol/l), body weight (0.9 kg), and systolic blood pressure (3.8 mmHg) with minimal minor hypoglycemia (1.30 episodes/patient-year) or nausea (3.2%). Among patients continuing liraglutide, further significant decreases in body weight (0.4 kg) and systolic blood pressure (2.2 mmHg) occurred with 0.74 episodes/patient-year of minor hypoglycemia and 1.5% experiencing nausea.CONCLUSIONSConversion from exenatide to liraglutide is well tolerated and provides additional glycemic control and cardiometabolic benefits

    Haemoglobin glycation index and risk for diabetes-related complications in the Action in Diabetes and Vascular Disease: Preterax and Diamicron Modified Release Controlled Evaluation (ADVANCE) trial

    Get PDF
    AIMS/HYPOTHESIS: Previous studies have suggested that the haemoglobin glycation index (HGI) can be used as a predictor of diabetes-related complications in individuals with type 1 and type 2 diabetes. We investigated whether HGI was a predictor of adverse outcomes of intensive glucose lowering and of diabetes-related complications in general, using data from the Action in Diabetes and Vascular Disease: Preterax and Diamicron Modified Release Controlled Evaluation (ADVANCE) trial. METHODS: We studied participants in the ADVANCE trial with data available for baseline HbA1c and fasting plasma glucose (FPG) (n = 11,083). HGI is the difference between observed HbA1c and HbA1c predicted from a simple linear regression of HbA1c on FPG. Using Cox regression, we investigated the association between HGI, both categorised and continuous, and adverse outcomes, considering treatment allocation (intensive or standard glucose control) and compared prediction of HGI and HbA1c. RESULTS: Intensive glucose control lowered mortality risk in individuals with high HGI only (HR 0.74 [95% CI 0.61, 0.91]; p = 0.003), while there was no difference in the effect of intensive treatment on mortality in those with high HbA1c. Irrespective of treatment allocation, every SD increase in HGI was associated with a significant risk increase of 14-17% for macrovascular and microvascular disease and mortality. However, when adjusted for identical covariates, HbA1c was a stronger predictor of these outcomes than HGI. CONCLUSIONS/INTERPRETATION: HGI predicts risk for complications in ADVANCE participants, irrespective of treatment allocation, but no better than HbA1c. Individuals with high HGI have a lower risk for mortality when on intensive treatment. Given the discordant results and uncertain relevance beyond HbA1c, clinical use of HGI in type 2 diabetes cannot currently be recommended

    Testing data types implementations from algebraic specifications

    Full text link
    Algebraic specifications of data types provide a natural basis for testing data types implementations. In this framework, the conformance relation is based on the satisfaction of axioms. This makes it possible to formally state the fundamental concepts of testing: exhaustive test set, testability hypotheses, oracle. Various criteria for selecting finite test sets have been proposed. They depend on the form of the axioms, and on the possibilities of observation of the implementation under test. This last point is related to the well-known oracle problem. As the main interest of algebraic specifications is data type abstraction, testing a concrete implementation raises the issue of the gap between the abstract description and the concrete representation. The observational semantics of algebraic specifications bring solutions on the basis of the so-called observable contexts. After a description of testing methods based on algebraic specifications, the chapter gives a brief presentation of some tools and case studies, and presents some applications to other formal methods involving datatypes

    Evaluation of the Association of IGF2BP2 Variants With Type 2 Diabetes in French Caucasians

    Get PDF
    OBJECTIVE—We performed a comprehensive genetic association study of common variation spanning the IGF2BP2 locus in order to replicate the association of the “confirmed” type 2 diabetes susceptibility variants rs4402960 and rs1470579 in the French Caucasian population and to further characterize the susceptibility variants at this novel locus

    Stimulus-dependent maximum entropy models of neural population codes

    Get PDF
    Neural populations encode information about their stimulus in a collective fashion, by joint activity patterns of spiking and silence. A full account of this mapping from stimulus to neural activity is given by the conditional probability distribution over neural codewords given the sensory input. To be able to infer a model for this distribution from large-scale neural recordings, we introduce a stimulus-dependent maximum entropy (SDME) model---a minimal extension of the canonical linear-nonlinear model of a single neuron, to a pairwise-coupled neural population. The model is able to capture the single-cell response properties as well as the correlations in neural spiking due to shared stimulus and due to effective neuron-to-neuron connections. Here we show that in a population of 100 retinal ganglion cells in the salamander retina responding to temporal white-noise stimuli, dependencies between cells play an important encoding role. As a result, the SDME model gives a more accurate account of single cell responses and in particular outperforms uncoupled models in reproducing the distributions of codewords emitted in response to a stimulus. We show how the SDME model, in conjunction with static maximum entropy models of population vocabulary, can be used to estimate information-theoretic quantities like surprise and information transmission in a neural population.Comment: 11 pages, 7 figure

    High-field superconductivity in alloyed MgB2 thin films

    Full text link
    We investigated the effect of alloying on the upper critical field Hc2H_{c2} in 12 MgB2MgB_2 films, in which disorder was introduced by growth, carbon doping or He-ion irradiation, finding a significant Hc2H_{c2} enhancement in C-alloyed films, and an anomalous upward curvature of Hc2(T)H_{c2}(T). Record high values of Hc2(4.2)35TH_{c2}^{\perp}(4.2) \simeq 35T and Hc2(4.2)51TH_{c2}\|(4.2) \simeq 51T were observed perpendicular and parallel to the ab plane, respectively. The temperature dependence of Hc2(T)H_{c2}(T) is described well by a theory of dirty two-gap superconductivity. Extrapolation of the experimental data to T=0 suggests that Hc2(0)H_{c2}\|(0) approaches the paramagnetic limit of 70T\sim 70T

    Analysis of KLF transcription factor family gene variants in type 2 diabetes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Krüppel-like factor (<it>KLF</it>) family consists of transcription factors that can activate or repress different genes implicated in processes such as differentiation, development, and cell cycle progression. Moreover, several of these proteins have been implicated in glucose homeostasis, making them candidate genes for involvement in type 2 diabetes (T2D).</p> <p>Methods</p> <p>Variants of nine <it>KLF </it>genes were genotyped in T2D cases and controls and analysed in a two-stage study. The first case-control set included 365 T2D patients with a strong family history of T2D and 363 normoglycemic individuals and the second set, 750 T2D patients and 741 normoglycemic individuals, all of French origin. The SNPs of six <it>KLF </it>genes were genotyped by Taqman<sup>® </sup>SNP Genotyping Assays. The other three <it>KLF </it>genes (KLF2, -15 and -16) were screened and the identified frequent variants of these genes were analysed in the case-control studies.</p> <p>Results</p> <p>Three of the 28 SNPs showed a trend to be associated with T2D in our first case-control set (P < 0.10). These SNPs, located in the <it>KLF2, KLF4 </it>and <it>KLF5 </it>gene were then analysed in our second replication set, but analysis of this set and the combined analysis of the three variants in all 2,219 individuals did not show an association with T2D in this French population. As the <it>KLF2</it>, -15 and -16 variants were representative for the genetic variability in these genes, we conclude they do not contribute to genetic susceptibility for T2D.</p> <p>Conclusion</p> <p>It is unlikely that variants in different members of the <it>KLF </it>gene family play a major role in T2D in the French population.</p

    Low-frequency variants in HMGA1 are not associated with type 2 diabetes risk.

    Get PDF
    It has recently been suggested that the low-frequency c.136-14_136-13insC variant in high-mobility group A1 (HMGA1) may strongly contribute to insulin resistance and type 2 diabetes risk. In our study, we attempted to confirm that HMGA1 is a novel type 2 diabetes locus in French Caucasians. The gene was sequenced in 368 type 2 diabetic case subjects with a family history of type 2 diabetes and 372 normoglycemic control subjects without a family history of type 2 diabetes. None of the 41 genetic variations identified were associated with type 2 diabetes. The lack of association between the c.136-14_136-13insC variant and type 2 diabetes was confirmed in an independent French group of 4,538 case subjects and 4,015 control subjects and in a large meta-analysis of 16,605 case subjects and 46,179 control subjects. Finally, this variant had no effects on metabolic traits and was not involved in variations of HMGA1 and insulin receptor (INSR) expressions. The c.136-14_136-13insC variant was not associated with type 2 diabetes in individuals of European descent. Our study emphasizes the need to analyze a large number of subjects to reliably assess the association of low-frequency variants with the disease
    corecore