66 research outputs found

    Interferon Regulatory Factor 8 Regulates Pathways for Antigen Presentation in Myeloid Cells and during Tuberculosis

    Get PDF
    IRF8 (Interferon Regulatory Factor 8) plays an important role in defenses against intracellular pathogens, including several aspects of myeloid cells function. It is required for ontogeny and maturation of macrophages and dendritic cells, for activation of anti-microbial defenses, and for production of the Th1-polarizing cytokine interleukin-12 (IL-12) in response to interferon gamma (IFNÎł) and protection against infection with Mycobacterium tuberculosis. The transcriptional programs and cellular pathways that are regulated by IRF8 in response to IFNÎł and that are important for defenses against M. tuberculosis are poorly understood. These were investigated by transcript profiling and chromatin immunoprecipitation on microarrays (ChIP-chip). Studies in primary macrophages identified 368 genes that are regulated by IRF8 in response to IFNÎł/CpG and that behave as stably segregating expression signatures (eQTLs) in F2 mice fixed for a wild-type or mutant allele at IRF8. A total of 319 IRF8 binding sites were identified on promoters genome-wide (ChIP-chip) in macrophages treated with IFNÎł/CpG, defining a functional G/AGAAnTGAAA motif. An analysis of the genes bearing a functional IRF8 binding site, and showing regulation by IFNÎł/CpG in macrophages and/or in M. tuberculosis-infected lungs, revealed a striking enrichment for the pathways of antigen processing and presentation, including multiple structural and enzymatic components of the Class I and Class II MHC (major histocompatibility complex) antigen presentation machinery. Also significantly enriched as IRF8 targets are the group of endomembrane- and phagosome-associated small GTPases of the IRG (immunity-related GTPases) and GBP (guanylate binding proteins) families. These results identify IRF8 as a key regulator of early response pathways in myeloid cells, including phagosome maturation, antigen processing, and antigen presentation by myeloid cells

    Push-me-pull-you: how microtubules organize the cell interior

    Get PDF
    Dynamic organization of the cell interior, which is crucial for cell function, largely depends on the microtubule cytoskeleton. Microtubules move and position organelles by pushing, pulling, or sliding. Pushing forces can be generated by microtubule polymerization, whereas pulling typically involves microtubule depolymerization or molecular motors, or both. Sliding between a microtubule and another microtubule, an organelle, or the cell cortex is also powered by molecular motors. Although numerous examples of microtubule-based pushing and pulling in living cells have been observed, it is not clear why different cell types and processes employ different mechanisms. This review introduces a classification of microtubule-based positioning strategies and discusses the efficacy of pushing and pulling. The positioning mechanisms based on microtubule pushing are efficient for movements over small distances, and for centering of organelles in symmetric geometries. Mechanisms based on pulling, on the other hand, are typically more elaborate, but are necessary when the distances to be covered by the organelles are large, and when the geometry is asymmetric and complex. Thus, taking into account cell geometry and the length scale of the movements helps to identify general principles of the intracellular layout based on microtubule forces

    A prospective study of decline in fat free mass and skeletal muscle strength in chronic obstructive pulmonary disease

    Get PDF
    BACKGROUND: Skeletal muscle depletion is an important complication of chronic obstructive pulmonary disease (COPD) but little prospective data exists about the rate at which it occurs and the factors that promote its development. We therefore prospectively investigated the impact of disease severity, exacerbation frequency and treatment with corticosteroids on change in body composition and maximum isometric quadriceps strength (QMVC) over one year. METHODS: 64 patients with stable COPD (FEV(1 )mean (SD) 35.8(18.4) %predicted) were recruited from clinic and studied on two occasions one year apart. Fat free mass was determined using bioelectrical impedance analysis and a disease specific regression equation. RESULTS: QMVC fell from 34.8(1.5) kg to 33.3(1.5) kg (p = 0.04). The decline in quadriceps strength was greatest in those with the highest strength at baseline (R -0.28 p = 0.02) and was not correlated with lung function, exacerbation frequency or steroid treatment. Decline in fat free mass was similarly higher in those with largest FFM at baseline (R = -0.31 p = 0.01) but was more strongly correlated with greater gas trapping (R = -0.4 p = 0.001). Patients with frequent exacerbations (>1 per year) (n = 36) experienced a greater decline in fat free mass compared to infrequent exacerbators (n = 28) -1.3(3.7)kg vs. +1.2(3.1)kg (p = 0.005), as did patients on maintenance oral steroids (n = 8) -2.8(3.3) kg vs. +0.2(3.5) kg (p = 0.024) whereas in those who stopped smoking (n = 7) fat free mass increased; +2.7(3.1) kg vs. -0.51(3.5) kg (p = 0.026). CONCLUSION: Decline in fat free mass in COPD is associated with worse lung function, continued cigarette consumption and frequent exacerbations. Factors predicting progression of quadriceps weakness could not be identified from the present cohort

    Drug Resistance in Eukaryotic Microorganisms

    Get PDF
    Eukaryotic microbial pathogens are major contributors to illness and death globally. Although much of their impact can be controlled by drug therapy as with prokaryotic microorganisms, the emergence of drug resistance has threatened these treatment efforts. Here, we discuss the challenges posed by eukaryotic microbial pathogens and how these are similar to, or differ from, the challenges of prokaryotic antibiotic resistance. The therapies used for several major eukaryotic microorganisms are then detailed, and the mechanisms that they have evolved to overcome these therapies are described. The rapid emergence of resistance and the restricted pipeline of new drug therapies pose considerable risks to global health and are particularly acute in the developing world. Nonetheless, we detail how the integration of new technology, biological understanding, epidemiology and evolutionary analysis can help sustain existing therapies, anticipate the emergence of resistance or optimize the deployment of new therapies

    Ecological phytochemistry of Cerrado (Brazilian savanna) plants

    Get PDF
    The Cerrado (the Brazilian savanna) is one of the vegetation formations of great biodiversity in Brazil and it has experienced strong deforestation and fragmentation. The Cerrado must contain at least 12,000 higher plant species.We discuss the ecological relevance of phytochemical studies carried out on plants from the Cerrado, including examples of phytotoxicity, antifungal, insecticidal and antibacterial activities. The results have been classified according to activity and plant family. The most active compounds have been highlighted and other activities are discussed. A large number of complex biochemical interactions occur in this system. However, only a small fraction of the species has been studied from the phytochemical viewpoint to identify the metabolites responsible for these interactions

    Transcriptional and Linkage Analyses Identify Loci that Mediate the Differential Macrophage Response to Inflammatory Stimuli and Infection

    Get PDF
    Macrophages display flexible activation states that range between pro-inflammatory (classical activation) and anti-inflammatory (alternative activation). These macrophage polarization states contribute to a variety of organismal phenotypes such as tissue remodeling and susceptibility to infectious and inflammatory diseases. Several macrophage- or immune-related genes have been shown to modulate infectious and inflammatory disease pathogenesis. However, the potential role that differences in macrophage activation phenotypes play in modulating differences in susceptibility to infectious and inflammatory disease is just emerging. We integrated transcriptional profiling and linkage analyses to determine the genetic basis for the differential murine macrophage response to inflammatory stimuli and to infection with the obligate intracellular parasite Toxoplasma gondii. We show that specific transcriptional programs, defined by distinct genomic loci, modulate macrophage activation phenotypes. In addition, we show that the difference between AJ and C57BL/6J macrophages in controlling Toxoplasma growth after stimulation with interferon gamma and tumor necrosis factor alpha mapped to chromosome 3, proximal to the Guanylate binding protein (Gbp) locus that is known to modulate the murine macrophage response to Toxoplasma. Using an shRNA-knockdown strategy, we show that the transcript levels of an RNA helicase, Ddx1, regulates strain differences in the amount of nitric oxide produced by macrophage after stimulation with interferon gamma and tumor necrosis factor. Our results provide a template for discovering candidate genes that modulate macrophage-mediated complex traits

    Response to periodic disturbances in the glass redraw process

    No full text
    The redraw process is a method employed for the manufacture of glass sheets required for example special optical filters, bendable displays, or wearable devices. During this process, a glass block is fed into a heater zone and drawn off to reduce its thickness. Fluctuations in the feed speed, the draw speed or the ambient temperature can all lead to irregularities in the final thickness profile. We present a linearized theory that allows the response to any given fluctuation to be computed, and obtain a simplified model in the high-frequency limit. The resulting framework allows for fast and efficient parameter sweeps that determine the most dangerous frequencies to be avoided and provide an important complementary tool for experimentalists working in the redraw process

    Functionalized benzophenone, thiophene, pyridine, and fluorene thiosemicarbazone derivatives as inhibitors of cathepsin L

    No full text
    A series of thiosemicarbazone analogs based on the benzophenone, thiophene, pyridine, and fluorene molecular frameworks has been prepared by chemical synthesis and evaluated as small-molecule inhibitors of the cysteine proteases cathepsin L and cathepsin B. The two most potent inhibitors of cathepsin L in this series (IC<sub>50</sub> <135 nM) are brominated-benzophenone thiosemicarbazone analogs that are further functionalized with a phenolic moiety (2 and 6). In addition, a bromo-benzophenone thiosemicarbazone acetyl derivative (3) is also strongly inhibitory against cathepsin L (IC<sub>50</sub> = 150.8 nM). Bromine substitution in the thiophene series results in compounds that demonstrate only moderate inhibition of cathepsin L. The two most active analogs in the benzophenone thiosemicarbazone series are highly selective for their inhibition of cathepsin L versus cathepsin B
    • 

    corecore