555 research outputs found
New RR Lyrae variables in binary systems
Despite their importance, very few RR Lyrae (RRL) stars have been known to
reside in binary systems. We report on a search for binary RRL in the OGLE-III
Galactic bulge data. Our approach consists in the search for evidence of the
light-travel time effect in so-called observed minus calculated ()
diagrams. Analysis of 1952 well-observed fundamental-mode RRL in the OGLE-III
data revealed an initial sample of 29 candidates. We used the recently released
OGLE-IV data to extend the baselines up to 17 years, leading to a final sample
of 12 firm binary candidates. We provide diagrams and binary parameters
for this final sample, and also discuss the properties of 8 additional
candidate binaries whose parameters cannot be firmly determined at present. We
also estimate that per cent of the RRL reside in binary systems.Comment: MNRAS Letters, in pres
The Star Blended with the MOA-2008-BLG-310 Source Is Not the Exoplanet Host Star
High resolution Hubble Space Telescope (HST) image analysis of the
MOA-2008-BLG-310 microlens system indicates that the excess flux at the
location of the source found in the discovery paper cannot primarily be due to
the lens star because it does not match the lens-source relative proper motion,
, predicted by the microlens models. This excess flux is most
likely to be due to an unrelated star that happens to be located in close
proximity to the source star. Two epochs of HST observations indicate proper
motion for this blend star that is typical of a random bulge star, but is not
consistent with a companion to the source or lens stars if the flux is
dominated by only one star, aside from the lens. We consider models in which
the excess flux is due to a combination of an unrelated star and the lens star,
and this yields 95\% confidence level upper limit on the lens star brightness
of and . A Bayesian analysis using a standard
Galactic model and these magnitude limits yields a host star mass , a planet mass of at a projected separation of AU. This result illustrates excess flux in a high
resolution image of a microlens-source system need not be due to the lens. It
is important to check that the lens-source relative proper motion is consistent
with the microlensing prediction. The high resolution image analysis techniques
developed in this paper can be used to verify the WFIRST exoplanet microlensing
survey mass measurements.Comment: Submitted to AJ on March 18, 201
Detection of Beat Cepheids in M33 and Their Use as a Probe of the M33 Metallicity Distribution
Our analysis of the Deep CFHT M33 variability survey database has uncovered 5
Beat Cepheids (BCs) that are pulsating in the fundamental and first overtone
modes. With {\it only} the help of stellar pulsation theory and of
mass--luminosity (M-L) relations, derived from evolutionary tracks, we can
accurately determine the metallicities Z of these stars. The [O/H] metallicity
gradient of -0.16 dex/kpc that is inferred from the M33 galacto-centric
distances of these Cepheids and from their 'pulsation' metallicities is in
excellent agreement with the standard spectroscopic metallicity gradients that
are determined from H II regions, early B supergiant stars and planetary
nebulae. Beat Cepheids can thus provide an additional, independent probe of
galactic metallicity distributions.Comment: 5 pages, 2 fig
Effects of High Functional Resistance Training on Parameters of Arterial Stiffness- Pilot Study
poste
ExELS: an exoplanet legacy science proposal for the ESA Euclid mission. II. Hot exoplanets and sub-stellar systems
The Exoplanet Euclid Legacy Survey (ExELS) proposes to determine the
frequency of cold exoplanets down to Earth mass from host separations of ~1 AU
out to the free-floating regime by detecting microlensing events in Galactic
Bulge. We show that ExELS can also detect large numbers of hot, transiting
exoplanets in the same population. The combined microlensing+transit survey
would allow the first self-consistent estimate of the relative frequencies of
hot and cold sub-stellar companions, reducing biases in comparing "near-field"
radial velocity and transiting exoplanets with "far-field" microlensing
exoplanets. The age of the Bulge and its spread in metallicity further allows
ExELS to better constrain both the variation of companion frequency with
metallicity and statistically explore the strength of star-planet tides.
We conservatively estimate that ExELS will detect ~4100 sub-stellar objects,
with sensitivity typically reaching down to Neptune-mass planets. Of these,
~600 will be detectable in both Euclid's VIS (optical) channel and NISP H-band
imager, with ~90% of detections being hot Jupiters. Likely scenarios predict a
range of 2900-7000 for VIS and 400-1600 for H-band. Twice as many can be
expected in VIS if the cadence can be increased to match the 20-minute H-band
cadence. The separation of planets from brown dwarfs via Doppler boosting or
ellipsoidal variability will be possible in a handful of cases. Radial velocity
confirmation should be possible in some cases, using 30-metre-class telescopes.
We expect secondary eclipses, and reflection and emission from planets to be
detectable in up to ~100 systems in both VIS and NISP-H. Transits of ~500
planetary-radius companions will be characterised with two-colour photometry
and ~40 with four-colour photometry (VIS,YJH), and the albedo of (and emission
from) a large sample of hot Jupiters in the H-band can be explored
statistically.Comment: 18 pages, 16 figures, accepted MNRA
ExELS: an exoplanet legacy science proposal for the ESA Euclid mission. II. Hot exoplanets and sub-stellar systems
The Exoplanet Euclid Legacy Survey (ExELS) proposes to determine the
frequency of cold exoplanets down to Earth mass from host separations of ~1 AU
out to the free-floating regime by detecting microlensing events in Galactic
Bulge. We show that ExELS can also detect large numbers of hot, transiting
exoplanets in the same population. The combined microlensing+transit survey
would allow the first self-consistent estimate of the relative frequencies of
hot and cold sub-stellar companions, reducing biases in comparing "near-field"
radial velocity and transiting exoplanets with "far-field" microlensing
exoplanets. The age of the Bulge and its spread in metallicity further allows
ExELS to better constrain both the variation of companion frequency with
metallicity and statistically explore the strength of star-planet tides.
We conservatively estimate that ExELS will detect ~4100 sub-stellar objects,
with sensitivity typically reaching down to Neptune-mass planets. Of these,
~600 will be detectable in both Euclid's VIS (optical) channel and NISP H-band
imager, with ~90% of detections being hot Jupiters. Likely scenarios predict a
range of 2900-7000 for VIS and 400-1600 for H-band. Twice as many can be
expected in VIS if the cadence can be increased to match the 20-minute H-band
cadence. The separation of planets from brown dwarfs via Doppler boosting or
ellipsoidal variability will be possible in a handful of cases. Radial velocity
confirmation should be possible in some cases, using 30-metre-class telescopes.
We expect secondary eclipses, and reflection and emission from planets to be
detectable in up to ~100 systems in both VIS and NISP-H. Transits of ~500
planetary-radius companions will be characterised with two-colour photometry
and ~40 with four-colour photometry (VIS,YJH), and the albedo of (and emission
from) a large sample of hot Jupiters in the H-band can be explored
statistically.Comment: 18 pages, 16 figures, accepted MNRA
Towards A Census of Earth-mass Exo-planets with Gravitational Microlensing
Thirteen exo-planets have been discovered using the gravitational
microlensing technique (out of which 7 have been published). These planets
already demonstrate that super-Earths (with mass up to ~10 Earth masses) beyond
the snow line are common and multiple planet systems are not rare. In this
White Paper we introduce the basic concepts of the gravitational microlensing
technique, summarise the current mode of discovery and outline future steps
towards a complete census of planets including Earth-mass planets. In the
near-term (over the next 5 years) we advocate a strategy of automated follow-up
with existing and upgraded telescopes which will significantly increase the
current planet detection efficiency. In the medium 5-10 year term, we envision
an international network of wide-field 2m class telescopes to discover
Earth-mass and free-floating exo-planets. In the long (10-15 year) term, we
strongly advocate a space microlensing telescope which, when combined with
Kepler, will provide a complete census of planets down to Earth mass at almost
all separations. Such a survey could be undertaken as a science programme on
Euclid, a dark energy probe with a wide-field imager which has been proposed to
ESA's Cosmic Vision Programme.Comment: 10 pages. White Paper submission to the ESA Exo-Planet Roadmap
Advisory Team. See also "Inferring statistics of planet populations by means
of automated microlensing searches" by M. Dominik et al. (arXiv:0808.0004
- âŠ