1,245 research outputs found
Spin filtering in nanowire directional coupler
The spin transport characteristics of a nanowire directional electronic
coupler have been evaluated theoretically via a transfer matrix approach. The
application of a gate field in the region of mixing allows for control of spin
current through the different leads of the coupler via the Rashba spin-orbit
interaction. The combination of spin-orbit interaction and applied gate
voltages on different legs of the coupler give rise to a controllable
modulation of the spin polarization. Both structural factors and field strength
tuning lead to a rich phenomenology that could be exploited in spintronic
devices.Comment: 9 pages, 4 figure
Tuning hole mobility in InP nanowires
Transport properties of holes in InP nanowires were calculated considering
electron-phonon interaction via deformation potentials, the effect of
temperature and strain fields. Using molecular dynamics, we simulate nanowire
structures, LO-phonon energy renormalization and lifetime. The valence band
ground state changes between light- and heavy-hole character, as the strain
fields and the nanowire size are changed. Drastic changes in the mobility arise
with the onset of resonance between the LO-phonons and the separation between
valence subbands.Comment: 4 pages, 4 figure
Spin-polarization in quantum wires: Influence of Dresselhaus spin-orbit interaction and cross-section effects
We examine the effects of the full Dresselhaus spin-orbit coupling on laterally confined quantum wire states. An analysis of the relative contributions due to linear, quadratic, and cubic Dresselhaus spin-orbit terms on the energy levels, spin splitting, and spin polarization has been carried out. The effects of wire cross-sectional geometry shapes on the electronic structure are explored. In particular we compared the results of semicylindrical and cylindrical confinements and have found important differences between the spin degeneracy of the ground-state level and the spin-polarization dependence on sign inversion of the free linear momentum quantum number along the wire axis. Different from other symmetries, in both cases here considered, the stronger spin-splitting effects come from the quadratic Dresselhaus term. We report ideal conditions for realization of spin-field filter devices based on symmetry properties of the spin splitting of the ground state in semicylindrical quantum wires
Aharonov-Bohm interference in quantum ring exciton: effects of built-in electric fields
We report a comprehensive discussion of quantum interference effects due to
the finite structure of excitons in quantum rings and their first experimental
corroboration observed in the optical recombinations. Anomalous features that
appear in the experiments are analyzed according to theoretical models that
describe the modulation of the interference pattern by temperature and built-in
electric fields.Comment: 6 pages, 7 figure
Electric field inversion asymmetry: Rashba and Stark effects for holes in resonant tunneling devices
We report experimental evidence of excitonic spin-splitting, in addition to
the conventional Zeeman effect, produced by a combination of the Rashba
spin-orbit interaction, Stark shift and charge screening. The
electric-field-induced modulation of the spin-splitting are studied during the
charging and discharging processes of p-type GaAs/AlAs double barrier resonant
tunneling diodes (RTD) under applied bias and magnetic field. The abrupt
changes in the photoluminescence, with the applied bias, provide information of
the charge accumulation effects on the device.Comment: 4 pages, 2 figure
Electron transport in quantum dot chains: Dimensionality effects and hopping conductance
Detailed experimental and theoretical studies of lateral electron transport in a system of quantum dot chains demonstrate the complicated character of the conductance within the chain structure due to the interaction of conduction channels with different dimensionalities. The one-dimensional character of states in the wetting layer results in an anisotropic mobility, while the presence of the zero-dimensional states of the quantum dots leads to enhanced hopping conductance, which affects the low-temperature mobility and demonstrates an anisotropy in the conductance. These phenomena were probed by considering a one-dimensional model of hopping along with band filling effects. Differences between the model and the experimental results indicate that this system does not obey the simple one-dimensional Mott\u27s law of hopping and deserves further experimental and theoretical considerations
Cyclin-Dependent Kinase Inhibitor p21 Controls Adult Neural Stem Cell Expansion by Regulating Sox2 Gene Expression
In the adult brain, continual neurogenesis of olfactory neurons is sustained by the existence of neural stem cells (NSCs) in the subependymal niche. Elimination of the cyclin-dependent kinase inhibitor 1A (p21) leads to premature exhaustion of the subependymal NSC pool, suggesting a relationship between cell cycle control and long-term self-renewal, but the molecular mechanisms underlying NSC maintenance by p21 remain unexplored. Here we identify a function of p21 in the direct regulation of the expression of pluripotency factor Sox2, a key regulator of the specification and maintenance of neural progenitors. We observe that p21 directly binds a Sox2 enhancer and negatively regulates Sox2 expression in NSCs. Augmented levels of Sox2 in p21 null cells induce replicative stress and a DNA damage response that leads to cell growth arrest mediated by increased levels of p19(Arf) and p53. Our results show a regulation of NSC expansion driven by a p21/Sox2/p53 axis
Influence of the addition of exogenous xylanase with or without pre-incubation on the in vitro ruminal fermentation of three fibrous feeds
These by-products could be used as animal feedstuffs, but their use is limited by their high fibre content, which invariably lowers the efficiency of digestive utilization (Khattab et al. 2013; Kholif et al. 2014). Fibrous feeds are characterized by high lignocellulose content, low crude protein (CP) content, poor palatability, and low nutrient digestibility (Kholif et al. 2014; Togtokhbayar et al. 2015). The structural carbohydrates of the fibre are less digestible than other nutrients, and the cell wall (mainly the lignin) may be a physical barrier for the bacterial attachment and the access of ruminal enzymes resulting in limited ruminal degradability (Karunanandaa et al. 1995)The effects of the exogenous fibrolytic enzyme (ENZ) commercial preparation Dyadic® xylanase PLUS (Dyadic International, Inc., Jupiter, USA), containing endo-1,4-β-d-xylanase, on ruminal fermentation of maize stover, oat straw, and sugarcane bagasse were examined using the in vitro gas production (GP) technique. The ENZ commercial preparation was added at 0 (control), 60 (low), 120 (medium), and 240 (high) μg/g dry matter of substrate, and at two times of application (direct addition just before fermentation or with a 72-h pre-incubation before fermentation). Ruminal GP volumes were recorded at 2, 4, 6, 8, 10, 12, 14, 24, and 48 h of incubation, and substrate degradability and concentration of fermentation end-products (volatile fatty acids, ammonia, methane) in the cultures were determined at 48 h of incubation. Increased (P 0.05) by ENZ application in maize stover and oat straw. However, total and individual VFA concentrations, and CH4 and CO2 volumes were greater (P < 0.05) when sugarcane bagasse was incubated with 240 μg ENZ/g (P < 0.05). It can be concluded that the application of endo-1,4-β-d-xylanase enhances rumen fermentation of roughages, although the magnitude of the effects depends on the fibrous substrate fermented, the time of application, and the amount of enzyme added
- …