112 research outputs found
The stochastic gravitational wave background from turbulence and magnetic fields generated by a first-order phase transition
We analytically derive the spectrum of gravitational waves due to
magneto-hydrodynamical turbulence generated by bubble collisions in a
first-order phase transition. In contrast to previous studies, we take into
account the fact that turbulence and magnetic fields act as sources of
gravitational waves for many Hubble times after the phase transition is
completed. This modifies the gravitational wave spectrum at large scales. We
also model the initial stirring phase preceding the Kolmogorov cascade, while
earlier works assume that the Kolmogorov spectrum sets in instantaneously. The
continuity in time of the source is relevant for a correct determination of the
peak position of the gravitational wave spectrum. We discuss how the results
depend on assumptions about the unequal-time correlation of the source and
motivate a realistic choice for it. Our treatment gives a similar peak
frequency as previous analyses but the amplitude of the signal is reduced due
to the use of a more realistic power spectrum for the magneto-hydrodynamical
turbulence. For a strongly first-order electroweak phase transition, the signal
is observable with the space interferometer LISA.Comment: 46 pages, 17 figures. Replaced with revised version accepted for
publication in JCA
Updated precision measurement of the average lifetime of B hadrons
The measurement of the average lifetime of B hadrons using inclusively reconstructed secondary vertices has been updated using both an improved processing of previous data and additional statistics from new data. This has reduced the statistical and systematic uncertainties and gives \tau_{\mathrm{B}} = 1.582 \pm 0.011\ \mathrm{(stat.)} \pm 0.027\ \mathrm{(syst.)}\ \mathrm{ps.} Combining this result with the previous result based on charged particle impact parameter distributions yields \tau_{\mathrm{B}} = 1.575 \pm 0.010\ \mathrm{(stat.)} \pm 0.026\ \mathrm{(syst.)}\ \mathrm{ps.
Limits on the production of scalar leptoquarks from Z (0) decays at LEP
A search has been made for pairs and for single production of scalar leptoquarks of the first and second generations using a data sample of 392000 Z0 decays from the DELPHI detector at LEP 1. No signal was found and limits on the leptoquark mass, production cross section and branching ratio were set. A mass limit at 95% confidence level of 45.5 GeV/c2 was obtained for leptoquark pair production. The search for the production of a single leptoquark probed the mass region above this limit and its results exclude first and second generation leptoquarks D0 with masses below 65 GeV/c2 and 73 GeV/c2 respectively, at 95% confidence level, assuming that the D0lq Yukawa coupling alpha(lambda) is equal to the electromagnetic one. An upper limit is also given on the coupling alpha(lambda) as a function of the leptoquark mass m(D0)
Molecular characterization and mapping of ALMT1, the aluminium-tolerance gene of bread wheat (Triticum aestivum L.)
The major aluminum (Al) tolerance gene in wheat ALMT1 confers an Al-activated efflux of malate from root apices. We determined the genomic structure of the ALMT1 gene and found it consists of 6 exons interrupted by 5 introns. Sequencing a range of wheat genotypes identified 3 alleles for ALMT1, 1 of which was identical to the ALMT1 gene from an Aegilops tauschii accession. The ALMT1 gene was mapped to chromosome 4DL using 'Chinese Spring' deletion lines, and loss of ALMT1 coincided with the loss of both Al tolerance and Al-activated malate efflux. Aluminium tolerance in each of 5 different doubled-haploid populations was found to be conditioned by a single major gene. When ALMT1 was polymorphic between the parental lines, QTL and linkage analyses indicated that ALMT1 mapped to chromosome 4DL and cosegregated with Al tolerance. In 2 populations examined, Al tolerance also segregated with a greater capacity for Al-activated malate efflux. Aluminium tolerance was not associated with a particular coding allele for ALMT1, but was significantly correlated with the relative level of ALMT1 expression. These findings suggest that the Al tolerance in a diverse range of wheat genotypes is primarily conditioned by ALMT1
Transcriptional profiling of wheat and wheat-rye addition lines to identify candidate genes for aluminum tolerance
A large-scale expression profiling study was performed to investigate candidate genes associated with the two quantitative trait loci for aluminum (Al) tolerance (Alt1 and Alt2). They have been identified in rye and localized on chromosomes 6R and 3R, respectively. Materials employed were hexaploid wheat (cv. Chinese Spring), and two wheatrye addition lines (3R-AL and 6R-AL). Seedlings were treated with and without Al for 24 h to examine genes upregulated or down-regulated by Al. Measurements of root growth at different Al concentrations showed the Al tolerance was higher in 3R-AL than in 6R-AL and wheat. Initial transcriptomic results revealed that more genes changed expression (>10 fold) in the wheat and in the 6R-AL line (moderately tolerant) than in the 3R-AL line (highly tolerant). A method was developed to determine whether candidate genes are involved in Al tolerance or in responses to Al toxicity. Real-time quantitative PCRs were carried out in a subset of six genes with known function in near isogenic rye lines 389 (Al-sensitive) and 390 (Al tolerant). All six genes were up-regulated by Al in line 389 but not in line 390, indicating that they were involved in Al stress response but not in Al tolerance mechanisms. Subsequent analysis of Arabidopsis lines with knockout mutations in homologues of these six genes showed an Al sensitivity similar to the wild-type, providing more evidence towards their participation in the response to stress rather than to Al tolerance. Once the stress response genes were ruled out, the focus was turned to the identification of tolerance genes by studying transcripts up-regulated and down-regulated in the tolerant 3R line with respect to wheat and 6R line. Finally, a list of candidate genes that could be conferring increased tolerance was obtainedDepto. de Genética, Fisiología y MicrobiologíaFac. de Ciencias BiológicasTRUEpu
- …