36 research outputs found

    Regulation of the Leucine Metabolism in Mortierella alpina

    Get PDF
    The oleaginous fungus Mortierella alpina is a safe source of polyunsaturated fatty acids (PUFA) in industrial food and feed production. Besides PUFA production, pharmaceutically relevant surface-active and antimicrobial oligopeptides were isolated from this basal fungus. Both production of fatty acids and oligopeptides rely on the biosynthesis and high turnover of branched-chain-amino acids (BCAA), especially l -leucine. However, the regulation of BCAA biosynthesis in basal fungi is largely unknown. Here, we report on the regulation of the leucine, isoleucine, and valine metabolism in M. alpina . In contrast to higher fungi, the biosynthetic genes for BCAA are hardly transcriptionally regulated, as shown by qRT-PCR analysis, which suggests a constant production of BCAAs. However, the enzymes of the leucine metabolism are tightly metabolically regulated. Three enzymes of the leucine metabolism were heterologously produced in Escherichia coli , one of which is inhibited by allosteric feedback loops: The key regulator is the α-isopropylmalate synthase LeuA1, which is strongly disabled by l -leucine, α-ketoisocaproate, and propionyl-CoA, the precursor of the odd-chain fatty acid catabolism. Its gene is not related to homologs from higher fungi, but it has been inherited from a phototrophic ancestor by horizontal gene transfer

    Multifactorial Induction of an Orphan PKS-NRPS Gene Cluster in Aspergillus terreus

    Get PDF
    SummaryMining the genome of the pathogenic fungus Aspergillus terreus revealed the presence of an orphan polyketide-nonribosomal-peptide synthetase (PKS-NRPS) gene cluster. Induced expression of the transcriptional activator gene adjacent to the PKS-NRPS gene was not sufficient for the activation of the silent pathway. Monitoring gene expression, metabolic profiling, and using a lacZ reporter strain allowed for the systematic investigation of physiological conditions that eventually led to the discovery of isoflavipucine and dihydroisoflavipucine. Phytotoxin formation is only activated in the presence of certain amino acids, stimulated at alkaline pH, but strictly repressed in the presence of glucose. Global carbon catabolite repression by CreA cannot be abolished by positive-acting factors such as PacC and overrides the pathway activator. Gene inactivation and stable isotope labeling experiments unveiled the molecular basis for flavipucine/fruit rot toxin biosynthesis

    Phytotoxin production in Aspergillus terreus is regulated by independent environmental signals

    Get PDF
    Secondary metabolites have a great potential as pharmaceuticals, but there are only a few examples where regulation of gene cluster expression has been correlated with ecological and physiological relevance for the producer. Here, signals, mediators, and biological effects of terrein production were studied in the fungus Aspergillus terreus to elucidate the contribution of terrein to ecological competition. Terrein causes fruit surface lesions and inhibits plant seed germination. Additionally, terrein is moderately antifungal and reduces ferric iron, thereby supporting growth of A. terreus under iron starvation. In accordance, the lack of nitrogen or iron or elevated methionine levels induced terrein production and was dependent on either the nitrogen response regulators AreA and AtfA or the iron response regulator HapX. Independent signal transduction allows complex sensing of the environment and, combined with its broad spectrum of biological activities, terrein provides a prominent example of adapted secondary metabolite production in response to environmental competition

    Terrein Biosynthesis in Aspergillus terreus and Its Impact on Phytotoxicity

    Get PDF
    Terrein is a fungal metabolite with ecological, antimicrobial, antiproliferative, and antioxidative activities. Although it is produced by Aspergillus terreus as one of its major secondary metabolites, not much is known about its biosynthetic pathway. Here, we describe an unexpected discovery of the terrein biosynthesis gene locus made while we were looking for a PKS gene involved in production of conidia coloration pigments common for Aspergilli. The gene, ATEG_00145, here named terA, is essential for terrein biosynthesis and heterologous production of TerA in Aspergillus niger revealed an unusual plasticity in the products formed, yielding a mixture of 4-hydroxy-6-methylpyranone, orsellinic acid, and 6,7-dihydroxymellein. Biochemical and molecular genetic analyses indicate a low extension cycle specificity of TerA. Furthermore, 6-hydroxymellein was identified as a key intermediate in terrein biosynthesis. We find that terrein production is highly induced on plant-derived media, that terrein has phytotoxic activity on plant growth, and induces lesions on fruit surfaces

    Genetic Survey of Psilocybe Natural Products

    Get PDF
    Psilocybe magic mushrooms are best known for their main natural product, psilocybin, and its dephosphorylated congener, the psychedelic metabolite psilocin. Beyond tryptamines, the secondary metabolome of these fungi is poorly understood. The genomes of five species ( P. azurescens , P. cubensis , P. cyanescens , P. mexicana , and P. serbica ) were browsed to understand more profoundly common and species‐specific metabolic capacities. The genomic analyses revealed a much greater and yet unexplored metabolic diversity than evident from parallel chemical analyses. P. cyanescens and P. mexicana were identified as aeruginascin producers. Lumichrome and verpacamide A were also detected as Psilocybe metabolites. The observations concerning the potential secondary metabolome of this fungal genus support pharmacological and toxicological efforts to find a rational basis for yet elusive phenomena, such as paralytic effects, attributed to consumption of some magic mushrooms

    A highly conserved basidiomycete peptide synthetase produces a trimeric hydroxamate siderophore

    Get PDF
    The model white-rot basidiomycete Ceriporiopsis (Gelatoporia) subvermispora B encodes putative natural product biosynthesis genes. Among them is the gene for the seven-domain nonribosomal peptide synthetase CsNPS2. It is a member of the as-yet uncharacterized fungal type VI siderophore synthetase family which is highly conserved and widely distributed among the basidiomycetes. These enzymes include only one adenylation (A) domain, i.e., one complete peptide synthetase module and two thiolation/condensation (T-C) di-domain partial modules which, together, constitute an AT1C1T2C2T3C3 domain setup. The full-length CsNPS2 enzyme (274.5 kDa) was heterologously produced as polyhistidine fusion in Aspergillus niger as soluble and active protein. N5-acetyl-N5-hydroxy-L-ornithine (L-AHO) and N5-cis anhydromevalonyl-N5-hydroxy-L-ornithine (L-AMHO) were accepted as substrates, as assessed in vitro using the substrate-dependent [32P] ATP-pyrophosphate radioisotope exchange assay. Full-length holo-CsNPS2 catalyzed amide bond formation between three L-AHO molecules to release the linear L-AHO trimer, called basidioferrin, as product in vitro, which was verified by LC-HRESIMS. Phylogenetic analyses suggest that type VI family siderophore synthetases are widespread in mushrooms and have evolved in a common ancestor of basidiomycetes

    Definition of the anti-inflammatory oligosaccharides derived from the galactosaminogalactan (GAG) from Aspergillus fumigatus

    Get PDF
    Galactosaminogalactan (GAG) is an insoluble aminosugar polymer produced by Aspergillus fumigatus and has anti-inflammatory properties. Here, the minimum glycosidic sequences required for the induction of IL-1Ra by peripheral blood mononuclear cells (PBMCs) was investigated. Using chemical degradation of native GAG to isolate soluble oligomers, we have found that the de-N-acetylation of galactosamine residues and the size of oligomer are critical for the in vitro immune response. A minimal oligomer size of 20 galactosamine residues is required for the anti-inflammatory response but the presence of galactose residues is not necessary. In a Dextran sulfate induced colitis mouse model, a fraction of de-N-acetylated oligomers of 13 < dp < 20 rescue inflammatory damage like the native GAG polymer in an IL-1Ra dependent pathway. Our results demonstrate the therapeutic suitability of water-soluble GAG oligosaccharides in IL-1 mediated hyper-inflammatory diseases and suggest that α-1,4-galactosamine oligomers chemically synthesized could represent new anti-inflammatory glycodrugs.Aviesan project Aspergillus, the French Government's Investissement d'Avenir program, Laboratoire d'Excellence Integrative Biology of Emerging Infectious Diseases (Grant No ANR-10-LABX-62-IBEID), la Fondation pour la Recherche Médicale (DEQ20150331722 LATGE Equipe FRM 2015). RS thanks Fundação para a Ciência e Tecnologia (FCT) contract IF/00021/201

    Genome sequencing of Rigidoporus microporus provides insights on genes important for wood decay, latex tolerance and interspecific fungal interactions

    Get PDF
    Correction: Scientific reports, vol. 10:1, art. 18199Fungal plant pathogens remain a serious threat to the sustainable agriculture and forestry, despite the extensive efforts undertaken to control their spread. White root rot disease is threatening rubber tree (Hevea brasiliensis) plantations throughout South and Southeast Asia and Western Africa, causing tree mortality and severe yield losses. Here, we report the complete genome sequence of the basidiomycete fungus Rigidoporus microporus, a causative agent of the disease. Our phylogenetic analysis confirmed the position of R. microporus among the members of Hymenochaetales, an understudied group of basidiomycetes. Our analysis further identified pathogen’s genes with a predicted role in the decay of plant cell wall polymers, in the utilization of latex components and in interspecific interactions between the pathogen and other fungi. We also detected putative horizontal gene transfer events in the genome of R. microporus. The reported first genome sequence of a tropical rubber tree pathogen R. microporus should contribute to the better understanding of how the fungus is able to facilitate wood decay and nutrient cycling as well as tolerate latex and utilize resinous extractives.Peer reviewe

    32. Vorlesung (23.01.2021): Bakteriologie IV

    No full text
    Vorlesungsinhalt: Actinobakterien; Mykobakterien; Mycolsäuren; TB Behandlung; Diphtherie-Therapie; Streptomyceten; Die Gattung Streptomyces; Antibiotika; Resistenzen; Tetracyclin
    corecore