270 research outputs found

    The mechanisms and mediators of tooth eruption--models for developmental biologists

    Get PDF
    Tooth eruption is a localized process in the jaws which exhibits precise timing and bilateral symmetry. It involves resorption and formation of bone on opposite sides of the erupting tooth and these activities depend on the dental follicle, a thin connective tissue investment of the developing and erupting tooth. Biochemical studies have shown that during eruption cells, proteins and enzymes change in the dental follicle and several growth factors and proteins known to accelerate or retard eruption have been identified. This review discusses these aspects of tooth eruption and proposes testable hypotheses and strategies that can make studies of tooth eruption new experimental opportunities for developmental biologists

    Endochondral bone formation in toothless (osteopetrotic) rats: failures of chondrocyte patterning and type X collagen expression

    Get PDF
    The pacemaker of endochondral bone growth is cell division and hypertrophy of chondrocytes. The developmental stages of chondrocytes, characterized by the expression of collagen types II and X, are arranged in arrays across the growth zone. Mutations in collagen II and X genes as well as the absence of their gene products lead to different, altered patterns of chondrocyte stages which remain aligned across the growth plate (GP). Here we analyze GP of rats bearing the mutation toothless (tl) which, apart from bone defects, develop a progressive, severe chondrodystrophy during postnatal weeks 3 to 6. Mutant GP exhibited disorganized, non-aligned chondrocytes and mineralized metaphyseal bone but without cartilage mineralization or cartilaginous extensions into the metaphysis. Expression of mRNA coding for collagen types II (Col II) and X (Col X) was examined in the tibial GP by in situ hybridization. Mutant rats at 2 weeks exhibited Col II RNA expression and some hypertrophied chondrocytes (HC) but no Col X RNA was detected. By 3rd week, HC had largely disappeared from the central part of the mutant GP and Col II RNA expression was present but weak and in 2 separate bands. Peripherally the GP contained HC but without Col X RNA expression. This abnormal pattern was exacerbated by the fourth week. Bone mineralized but cartilage in the GP did not. These data suggest that the tl mutation involves a regulatory function for chondrocyte maturation, including Col X RNA synthesis and mineralization, and that the GP abnormalities are related to the Col X deficiency. The differences in patterning in the tl rat GP compared to direct Col X mutations may be explained by compensatory effects

    Evidence that the rat osteopetrotic mutation toothless (tl) is not in the TNFSF11 (TRANCE, RANKL, ODF, OPGL) gene

    Get PDF
    The toothless (tl) osteopetrotic mutation in the rat affects an osteoblast-derived factor that is required for normal osteoclast differentiation. Although the genetic locus remains unknown, the phenotypic impact of the tl mutation on multiple systems has been well characterized. Some of its actions are similar to tumornecrosis factor superfamily member 11(TNFSF11; also called TRANCE, RANKL, ODF and OPGL) null mice. TNFSF11 is a recently described member of the tumor necrosis factor superfamily which, when expressed by activated T cells, enhances the survival of antigen-presenting dendritic cells, and when expressed by osteoblasts, promotes the differentiation and activation of osteoclasts. The skeletal similarities between tl rats and TNFSF11(-/-) mice include 1) profound osteoclastopenia (TNFSF11-null mice, 0% and tl rats 0-1% of normal); 2) persistent, non-resolving osteopetrosis that results from 3) a defect not in the osteoclast lineage itself, but in an osteoblast-derived, osteoclastogenic signal; and 4) a severe chondrodysplasia of the growth plates of long bones not seen in other osteopetrotic mutations. The latter includes thickening of the growth plate with age, disorganization of chondrocyte columns, and disturbances of chondrocyte maturation. These striking similarities prompted us to undertake studies to rule in or out a TNFSF11 mutation in the tl rat. We looked for expression of TNFSF11 mRNA in tl long bones and found it to be over-expressed and of the correct size. We also tested TNFSF11 protein function in the tl rat. This was shown to be normal by flow cytometry experiments in which activated, spleen-derived T-cells from tl rats exhibited normal receptor binding competence, as measured by a recombinant receptor assay. We also found that tl rats develop histologically normal mesenteric and peripheral lymph nodes, which are absent from TNFSF11-null mice. Next, we found that injections of recombinant TNFSF11, which restores bone resorption in null mice, had no therapeutic effect in tl rats. Finally, gene mapping studies using co-segregation of polymorphic markers excluded the chromosomal region containing the TNFSF11 gene as harboring the mutation responsible for the tl phenotype. We conclude that, despite substantial phenotypic similarities to TNFSF11(-/-) mice, the tl rat mutation is not in the TNFSF11 locus, and that its identification must await the results of further studies

    Colony-stimulating factor-1 (CSF-1) rescues osteoblast attachment, survival and sorting of beta-actin mRNA in the toothless (tl-osteopetrotic) mutation in the rat

    Get PDF
    We have shown that in the osteopetrotic rat mutation toothless (tl) osteoblasts are absent from older bone surfaces in mutants and that mutant osteoblasts in vivo lack the prominent stress fiber bundles polarized along bone surfaces in osteoblasts from normal littermates. Our recent data demonstrate that in normal osteoblasts in vitro beta- and gamma-actin mRNAs have different, characteristic intracellular distributions and that tl (mutant) osteoblasts fail to differentially sort these mRNAs. Because bone resorption and formation are highly interdependent and injections of CSF-1, a growth factor, increase bone resorption and growth in tl rats, we examined the effects of CSF-1 treatment on osteoblast survival and ultrastructure in vivo and ability to sort actin mRNAs in vitro. Neonatal CSF-1 treatment of mutants restores osteoblasts on older bone surfaces, normalizes the intracellular distribution of stress fibers in osteoblasts in vivo and promotes normal sorting of beta-actin mRNA in mutant osteoblasts in vitro without normalizing gamma-actin distribution. These data suggest the beta- and gamma-actin mRNAs in osteoblasts are sorted by different mechanisms and that the differential sorting of beta-actin mRNA is related to the characteristic polarization of stress fibers in osteoblasts and their survival on bone surfaces. This experimental system can be used to explore the relationships and regulation of these aspects of cell and tissue biology

    P50-53 PRENATAL FORMATION OF THE MAXILLARY AND MANDIBULAR ALVEOLAR BONE IN HUMANS

    Get PDF

    P51-52 PRENATAL FORMATION OF THE MAXILLARY AND MANDIBULAR ALVEOLAR BONE IN MICE

    Get PDF

    Chemical characterization of an encapsulated red wine powder and its effects on neuronal cells

    Get PDF
    Red wine polyphenols are known for their implications for human health protection, although they suffer from high instability. For this reason, a red wine powder was prepared by freeze-drying encapsulation in maltodextrin/arabic gum matrix, and its composition was determined by means of high-performance liquid chromatography coupled quadrupole time-of-flight mass spectrometry (HPLC-MS-QTOF). More than thirty polyphenols, including anthocyanins, flavanols, flavonols, phenolic acids and stilbenoids, were identified. Some of the main quantified polyphenols were: malvidin-3-O-glucoside, malvidin 3-O-(6”-acetyl-glucose), petunidin-3-O-glucoside, quercetin-3-O-glucuronide, syringenin-3-O-glucoside, epicatechin, gallic acid and syringic acid. The biological activity of this de-alcoholized and encapsulated red wine on human neuroblastoma SH-SY5Y cells was studied. The results showed that the encapsulated red wine powder has active redox properties, as verified by performing reactive oxygen species (ROS) analysis utilizing a neuronal model. This could help explain its action against the neurotoxicity induced by 6-hydroxydopamine (6-OHDA).Fil: Rocha Parra, Diego Fernando. Consejo Superior de Investigaciones Científicas. Instituto de Ciencia y Tecnologia de Alimentos y Nutrición; España. Pontificia Universidad Católica Argentina "Santa María de los Buenos Aires"; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Chirife, Jorge. Pontificia Universidad Católica Argentina "Santa María de los Buenos Aires"; ArgentinaFil: Zamora, María Clara. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Pontificia Universidad Católica Argentina "Santa María de los Buenos Aires"; ArgentinaFil: de Pascual Teresa, Sonia. Consejo Superior de Investigaciones Científicas. Instituto de Ciencia y Tecnologia de Alimentos y Nutrición; Españ

    The temporal response of bone to unloading

    Get PDF
    Rats were suspended by their tails with the forelimbs bearing the weight load to simulate the weightlessness of space flight. Growth in bone mass ceased by 1 week in the hindlimbs and lumbar vertebrae in growing rats, while growth in the forelimbs and cervical vertebrae remained unaffected. The effects of selective skeletal unloading on bone formation during 2 weeks of suspension was investigated using radio iostope incorporation (with Ca-45 and H-3 proline) and histomorphometry (with tetracycline labeling). The results of these studies were confirmed by histomorphometric measurements of bone formation using triple tetracycline labeling. This model of simulated weightlessness results in an initial inhibition of bone formation in the unloaded bones. This temporary cessation of bone formation is followed in the accretion of bone mass, which then resumes at a normal rate by 14 days, despite continued skeletal unloading. This cycle of inhibition and resumption of bone formation has profound implication for understanding bone dynamics durng space flight, immobilization, or bed rest and offers an opportunity to study the hormonal and mechanical factors that regulate bone formation

    Phase composition and transformations in magnetron-sputtered (Al,V)2O3 coatings

    Full text link
    Coatings of (Al1-xVx)2O3, with x ranging from 0 to 1, were deposited by pulsed DC reactive sputter deposition on Si(100) at a temperature of 550 {\deg}C. XRD showed three different crystal structures depending on V-metal fraction in the coating: {\alpha}-V2O3 rhombohedral structure for 100 at.% V, a defect spinel structure for the intermediate region, 63 - 42 at.% V. At lower V-content, 18 and 7 at.%, a gamma-alumina-like solid solution was observed, shifted to larger d-spacing compared to pure {\gamma}-Al2O3. The microstructure changes from large columnar faceted grains for {\alpha}-V2O3 to smaller equiaxed grains when lowering the vanadium content toward pure {\gamma}-Al2O3. Annealing in air resulted in formation of V2O5 crystals on the surface of the coating after annealing to 500 {\deg}C for 42 at.% V and 700 {\deg}C for 18 at.% V metal fraction respectively. The highest thermal stability was shown for pure {\gamma}-Al2O3-coating, which transformed to {\alpha}-Al2O3 after annealing to 1100{\deg} C. Highest hardness was observed for the Al-rich oxides, ~24 GPa. The latter decreased with increasing V-content, larger than 7 at.% V metal fraction. The measured hardness after annealing in air decreased in conjunction with the onset of further oxidation of the coatings
    corecore