1,085 research outputs found

    Models for gamma-ray production in low-mass microquasars

    Get PDF
    Unlike high-mass gamma-ray binaries, low-mass microquasars lack external sources of radiation and matter that could produce high-energy emission through interactions with relativistic particles. In this work we consider the synchrotron emission of protons and leptons that populate the jet of a low-mass microquasar. In our model photohadronic and inverse Compton (IC) interactions with synchrotron photons produced by both protons and leptons result in a high-energy tail of the spectrum. We also estimate the contribution from secondary pairs injected through photopair production. The high-energy emission is dominated by radiation of hadronic origin, so we can call these objects proton microquasars.Comment: 4 pages, 2 figures, accepted for publication in the International Journal of Modern Physics D, proceedings of HEPRO meeting, held in Dublin, in September 200

    Correlated radio--X-ray variability of Galactic Black Holes: A radio--X-ray flare in Cygnus X-1

    Full text link
    We report on the first detection of a quasi-simultaneous radio-X-ray flare of Cygnus X-1. The detection was made on 2005 April 16 with pointed observations by the Rossi X-ray Timing Explorer and the Ryle telescope, during a phase where the black hole candidate was close to a transition from the its soft into its hard state. The radio flare lagged the X-rays by approximately 7 minutes, peaking at 3:20 hours barycentric time (TDB 2453476.63864). We discuss this lag in the context of models explaining such flaring events as the ejection of electron bubbles emitting synchrotron radiation.Comment: 4 pages, 4 figure

    Steady jets from radiatively efficient hard states in GRS 1915+105

    Full text link
    Recent studies of different X-ray binaries (XRBs) have shown a clear correlation between the radio and X-ray emission. We present evidence of a close relationship found between the radio and X-ray emission at different epochs for GRS1915+105, using observations from the Ryle Telescope and Rossi X-ray Timing Explorer satellite. The strongest correlation was found during the hard state (also known as the `plateau' state), where a steady AU-scale jet is known to exist. Both the radio and X-ray emission were found to decay from the start of most plateau states, with the radio emission decaying faster. An empirical relationship of SradioSXrayξS_{\rm{radio}}\propto S_{\rm{X-ray}}^{\xi} was then fitted to data taken only during the plateau state, resulting in a power-law index of ξ1.7±0.3\xi\sim1.7\pm0.3, which is significantly higher than in other black hole XRBs in a similar state. An advection-flow model was then fitted to this relationship and compared to the universal XRB relationship as described by Gallo et al. (2003). We conclude that either (I) the accretion disk in this source is radiatively efficient, even during the continuous outflow of a compact jet, which could also suggest a universal turn-over from radiatively inefficient to efficient for all stellar-mass black holes at a critical mass accretion rate (m˙c1018.5\dot{m}_{\rm{c}}\approx10^{18.5} g/s); or (II) the X-rays in the plateau state are dominated by emission from the base of the jet and not the accretion disk (e.g. via inverse Compton scattering from the outflow).Comment: 9 pages, 7 figures, accepted in A&

    Radio and X-ray observations during the outburst decay of the Black Hole Candidate XTE J1908+094

    Full text link
    Obtaining simultaneous radio and X-ray data during the outburst decay of soft X-ray transients is a potentially important tool to study the disc - jet connection. Here we report results of the analysis of (nearly) simultaneous radio (VLA or WSRT) and Chandra X-ray observations of XTE J1908+094 during the last part of the decay of the source after an outburst. The limit on the index of a radio - X-ray correlation we find is consistent with the value of 0.7 which was found for other black hole candidates in the low/hard state. Interestingly, the limit we find seems more consistent with a value of 1.4 which was recently shown to be typical for radiatively efficient accretion flow models. We further show that when the correlation-index is the same for two sources one can use the differences in normalisation in the radio - X-ray flux correlation to estimate the distance towards the sources if the distance of one of them is accurately known (assuming black hole spin and mass and jet Lorentz factor differences are unimportant or minimal). Finally, we observed a strong increase in the rate of decay of the X-ray flux. Between March 23, 2003 and April 19, 2003 the X-ray flux decayed with a factor ~5 whereas between April 19, 2003 and May 13, 2003, the X-ray flux decreased by a factor ~750. The source (0.5-10 keV) luminosity at the last Chandra observation was L~3x10^32 (d/8.5 kpc)^2 erg s^-1.Comment: 7 pages, 3 figures, accepted for publication by MNRA

    Jet-lag in Sgr A*: What size and timing measurements tell us about the central black hole in the Milky Way

    Get PDF
    The black hole at the Galactic Center, Sgr A*, is the prototype of a galactic nucleus at a very low level of activity. Its radio through submm-wave emission is known to come from a region close to the event horizon, however, the source of the emission is still under debate. A successful theory explaining the emission is based on a relativistic jet model scaled down from powerful quasars. We want to test the predictive power of this established jet model against newly available measurements of wavelength-dependent time lags and the size-wavelength structure in Sgr A*. Using all available closure amplitude VLBI data from different groups, we again derived the intrinsic wavelength-dependent size of Sgr A*. This allowed us to calculate the expected frequency-dependent time lags of radio flares, assuming a range of in- and outflow velocities. Moreover, we calculated the time lags expected in the previously published pressure-driven jet model. The predicted lags are then compared to radio monitoring observations at 22, 43, and 350 GHz. The combination of time lags and size measurements imply a mildly relativistic outflow with bulk outflow speeds of gamma*beta ~ 0.5-2. The newly measured time lags are reproduced well by the jet model without any major fine tuning. The results further strengthen the case for the cm-to-mm wave radio emission in Sgr A* as coming from a mildly relativistic jet-like outflow. The combination of radio time lag and VLBI closure amplitude measurements is a powerful new tool for assessing the flow speed and direction in Sgr A*. Future VLBI and time lag measurements over a range of wavelengths will reveal more information about Sgr A*, such as the existence of a jet nozzle, and measure the detailed velocity structure of a relativistic jet near its launching point for the first time.Comment: Latex, 7 pages, accepted for publication in Astronomy & Astrophysic
    corecore