8 research outputs found

    The Pediatric Choroidal and Ciliary Body Melanoma Study A Survey by the European Ophthalmic Oncology Group

    Get PDF
    Purpose: To collect comprehensive data on choroidal and ciliary body melanoma (CCBM) in children and to validate hypotheses regarding pediatric CCBM: children younger than 18 years, males, and those without ciliary body involvement (CBI) have more favorable survival prognosis than young adults 18 to 24 years of age, females, and those with CBI. Design: Retrospective, multicenter observational study. Participants: Two hundred ninety-nine patients from 24 ocular oncology centers, of whom 114 were children (median age, 15.1 years; range, 2.7-17.9 years) and 185 were young adults. Methods: Data were entered through a secure website and were reviewed centrally. Survival was analyzed using Kaplan-Meier analysis and Cox proportional hazards regression. Main Outcome Measures: Proportion of females, tumor-node-metastasis (TNM) stage, cell type, and melanoma-related mortality. Results: Cumulative frequency of having CCBM diagnosed increased steadily by 0.8% per year of age between 5 and 10 years of age and, after a 6-year transition period, by 8.8% per year from age 17 years onward. Of children and young adults, 57% and 63% were female, respectively, which exceeded the expected 51% among young adults. Cell type, known for 35% of tumors, and TNM stage (I in 22% and 21%, II in 49% and 52%, III in 30% and 28%, respectively) were comparable for children and young adults. Melanoma-related survival was 97% and 90% at 5 years and 92% and 80% at 10 years for children compared with young adults, respectively (P = 0.013). Males tended to have a more favorable survival than females among children (100% vs. 85% at 10 years; P = 0.058). Increasing TNM stage was associated with poorer survival (stages I, II, and III: 100% vs. 86% vs. 76%, respectively; P = 0.0011). By multivariate analysis, being a young adult (adjusted hazard rate [HR], 2.57), a higher TNM stage (HR, 2.88 and 8.38 for stages II and III, respectively), and female gender (HR, 2.38) independently predicted less favorable survival. Ciliary body involvement and cell type were not associated with survival. Conclusions: This study confirms that children with CCBM have a more favorable survival than young adults 18 to 25 years of age, adjusting for TNM stage and gender. The association between gender and survival varies between age groups. (C) 2016 by the American Academy of Ophthalmology.Peer reviewe

    Collimation for the LHC high intensity beams

    Get PDF
    The unprecedented design intensities of the LHC require several important advances in beam collimation. With its more than 100 collimators, acting on various planes and beams, the LHC collimation system is the biggest and most performing such system ever designed and constructed. The solution for LHC collimation is explained, the technical components are introduced and the initial performance is presented. Residual beam leakage from the system is analysed. Measurements and simulations are presented which show that collimation efficiencies of better than 99.97 % have been measured with the 3.5 TeV proton beams of the LHC, in excellent agreement with expectations.peer-reviewe

    Abstracts from the Food Allergy and Anaphylaxis Meeting 2016

    Get PDF

    The Pediatric Choroidal and Ciliary Body Melanoma Study A Survey by the European Ophthalmic Oncology Group

    Get PDF
    Purpose: To collect comprehensive data on choroidal and ciliary body melanoma (CCBM) in children and to validate hypotheses regarding pediatric CCBM: children younger than 18 years, males, and those without ciliary body involvement (CBI) have more favorable survival prognosis than young adults 18 to 24 years of age, females, and those with CBI. Design: Retrospective, multicenter observational study. Participants: Two hundred ninety-nine patients from 24 ocular oncology centers, of whom 114 were children (median age, 15.1 years; range, 2.7-17.9 years) and 185 were young adults. Methods: Data were entered through a secure website and were reviewed centrally. Survival was analyzed using Kaplan-Meier analysis and Cox proportional hazards regression. Main Outcome Measures: Proportion of females, tumor-node-metastasis (TNM) stage, cell type, and melanoma-related mortality. Results: Cumulative frequency of having CCBM diagnosed increased steadily by 0.8% per year of age between 5 and 10 years of age and, after a 6-year transition period, by 8.8% per year from age 17 years onward. Of children and young adults, 57% and 63% were female, respectively, which exceeded the expected 51% among young adults. Cell type, known for 35% of tumors, and TNM stage (I in 22% and 21%, II in 49% and 52%, III in 30% and 28%, respectively) were comparable for children and young adults. Melanoma-related survival was 97% and 90% at 5 years and 92% and 80% at 10 years for children compared with young adults, respectively (P = 0.013). Males tended to have a more favorable survival than females among children (100% vs. 85% at 10 years; P = 0.058). Increasing TNM stage was associated with poorer survival (stages I, II, and III: 100% vs. 86% vs. 76%, respectively; P = 0.0011). By multivariate analysis, being a young adult (adjusted hazard rate [HR], 2.57), a higher TNM stage (HR, 2.88 and 8.38 for stages II and III, respectively), and female gender (HR, 2.38) independently predicted less favorable survival. Ciliary body involvement and cell type were not associated with survival. Conclusions: This study confirms that children with CCBM have a more favorable survival than young adults 18 to 25 years of age, adjusting for TNM stage and gender. The association between gender and survival varies between age groups. (C) 2016 by the American Academy of Ophthalmology

    Evolution of genes and genomes on the Drosophila phylogeny

    No full text
    Comparative analysis of multiple genomes in a phylogenetic framework dramatically improves the precision and sensitivity of evolutionary inference, producing more robust results than single-genome analyses can provide. The genomes of 12 Drosophila species, ten of which are presented here for the first time (sechellia, simulans, yakuba, erecta, ananassae, persimilis, willistoni, mojavensis, virilis and grimshawi), illustrate how rates and patterns of sequence divergence across taxa can illuminate evolutionary processes on a genomic scale. These genome sequences augment the formidable genetic tools that have made Drosophila melanogaster a pre-eminent model for animal genetics, and will further catalyse fundamental research on mechanisms of development, cell biology, genetics, disease, neurobiology, behaviour, physiology and evolution. Despite remarkable similarities among these Drosophila species, we identified many putatively non-neutral changes in protein-coding genes, non-coding RNA genes, and cis-regulatory regions. These may prove to underlie differences in the ecology and behaviour of these diverse species

    Clinical Effect of Early vs Late Amyloid Positron Emission Tomography in Memory Clinic Patients

    No full text
    International audienceImportance Amyloid positron emission tomography (PET) allows the direct assessment of amyloid deposition, one of the main hallmarks of Alzheimer disease. However, this technique is currently not widely reimbursed because of the lack of appropriately designed studies demonstrating its clinical effect. Objective To assess the clinical effect of amyloid PET in memory clinic patients. Design, Setting, and Participants The AMYPAD-DPMS is a prospective randomized clinical trial in 8 European memory clinics. Participants were allocated (using a minimization method) to 3 study groups based on the performance of amyloid PET: arm 1, early in the diagnostic workup (within 1 month); arm 2, late in the diagnostic workup (after a mean [SD] 8 [2] months); or arm 3, if and when the managing physician chose. Participants were patients with subjective cognitive decline plus (SCD+; SCD plus clinical features increasing the likelihood of preclinical Alzheimer disease), mild cognitive impairment (MCI), or dementia; they were assessed at baseline and after 3 months. Recruitment took place between April 16, 2018, and October 30, 2020. Data analysis was performed from July 2022 to January 2023. Intervention Amyloid PET. Main Outcome and Measure The main outcome was the difference between arm 1 and arm 2 in the proportion of participants receiving an etiological diagnosis with a very high confidence (ie, ≥90% on a 50%-100% visual numeric scale) after 3 months. Results A total of 844 participants were screened, and 840 were enrolled (291 in arm 1, 271 in arm 2, 278 in arm 3). Baseline and 3-month visit data were available for 272 participants in arm 1 and 260 in arm 2 (median [IQR] age: 71 [65-77] and 71 [65-77] years; 150/272 male [55%] and 135/260 male [52%]; 122/272 female [45%] and 125/260 female [48%]; median [IQR] education: 12 [10-15] and 13 [10-16] years, respectively). After 3 months, 109 of 272 participants (40%) in arm 1 had a diagnosis with very high confidence vs 30 of 260 (11%) in arm 2 ( P < .001). This was consistent across cognitive stages (SCD+: 25/84 [30%] vs 5/78 [6%]; P < .001; MCI: 45/108 [42%] vs 9/102 [9%]; P < .001; dementia: 39/80 [49%] vs 16/80 [20%]; P < .001). Conclusion and Relevance In this study, early amyloid PET allowed memory clinic patients to receive an etiological diagnosis with very high confidence after only 3 months compared with patients who had not undergone amyloid PET. These findings support the implementation of amyloid PET early in the diagnostic workup of memory clinic patients. Trial Registration EudraCT Number: 2017-002527-2

    Evolution of genes and genomes on the Drosophila phylogeny

    Get PDF
    Affiliations des auteurs : cf page 216 de l'articleInternational audienceComparative analysis of multiple genomes in a phylogenetic framework dramatically improves the precision and sensitivity of evolutionary inference, producing more robust results than single-genome analyses can provide. The genomes of 12 Drosophila species, ten of which are presented here for the first time (sechellia, simulans, yakuba, erecta, ananassae, persimilis, willistoni, mojavensis, virilis and grimshawi), illustrate how rates and patterns of sequence divergence across taxa can illuminate evolutionary processes on a genomic scale. These genome sequences augment the formidable genetic tools that have made Drosophila melanogaster a pre-eminent model for animal genetics, and will further catalyse fundamental research on mechanisms of development, cell biology, genetics, disease, neurobiology, behaviour, physiology and evolution. Despite remarkable similarities among these Drosophila species, we identified many putatively non-neutral changes in protein-coding genes, non-coding RNA genes, and cis-regulatory regions. These may prove to underlie differences in the ecology and behaviour of these diverse species
    corecore