602 research outputs found
Age-Induced Diminution of Free Radical Scavenging Capacity in Bee Pollens and the Contribution of Constituent Flavonoids
Bee-collected pollen (“bee pollen”) is promoted as a health food with a wide range of nutritional and therapeutic properties. The objective of the current study is to evaluate the contribution made through the free radical scavenging capability of bee-collected floval pollens by their flavonoid/phenolics constituents, and to determine whether this capability is affected by aging. The free radical scavenging effectiveness of a bee pollen (EC50) as measured by the DPPH method is shown to be determined by the nature and levels of the constituent floral pollens, which can be assayed via their phenolics profiles by HPLC. Each pure floral pollen has been found to possess a consistent EC50 value, irrespective of its geographic origin or date of collection, and the EC50 value is determined to a large extent (ca. 50%) by the nature and the levels of the pollen's flavonoids and phenolic acids. Non-phenolic antioxidants, possibly proteins, account for the balance of the activity. Pollen aging over 3 years is demonstrated to reduce the free radical scavenging activity by up to 50% in the most active floral pollens, which tend to contain the highest levels of flavonoids/phenolic acids. It is suggested that the freshness of a bee pollen may be determined from its free radical scavenging capacity relative to that of fresh bee pollen containing the same floral pollen mix
Sex matters during adolescence: Testosterone-related cortical thickness maturation differs between boys and girls
Age-related changes in cortical thickness have been observed during adolescence, including thinning in frontal and parietal cortices, and thickening in the lateral temporal lobes. Studies have shown sex differences in hormone-related brain maturation when boys and girls are age-matched, however, because girls mature 1-2 years earlier than boys, these sex differences could be confounded by pubertal maturation. To address puberty effects directly, this study assessed sex differences in testosterone-related cortical maturation by studying 85 boys and girls in a narrow age range and matched on sexual maturity. We expected that testosterone-by-sex interactions on cortical thickness would be observed in brain regions known from the animal literature to be high in androgen receptors. We found sex differences in associations between circulating testosterone and thickness in left inferior parietal lobule, middle temporal gyrus, calcarine sulcus, and right lingual gyrus, all regions known to be high in androgen receptors. Visual areas increased with testosterone in boys, but decreased in girls. All other regions were more impacted by testosterone levels in girls than boys. The regional pattern of sex-by-testosterone interactions may have implications for understanding sex differences in behavior and adolescent-onset neuropsychiatric disorders. © 2012 Bramen et al
An observational study on the expression levels of MDM2 and MDMX proteins, and associated effects on P53 in a series of human liposarcomas
Background: Inactivation of wild type P53 by its main cellular inhibitors (MDM2 and MDMX) is a well recognised feature of tumour formation in liposarcomas. MDM2 over-expression has been detected in approximately 80% of liposarcomas but only limited information is available about MDMX over-expression. To date, we are not aware of any study that has described the patterns of MDM2 and MDMX co-expression in liposarcomas. Such information has become more pertinent as various novel MDM2 and/or MDMX single and dual affinity antagonist compounds are emerging as an alternative approach for potential targeted therapeutic strategies. Methods. We analysed a case series of 61 fully characterized liposarcomas of various sub-types by immunohistochemistry, to assess the expression levels of P53, MDM2 and MDMX, simultaneously. P53 sequencing was performed in all cases that expressed P53 protein in 10% or more of cells to rule out mutation-related over-expression. Results: 50 cases over-expressed MDM2 and 42 of these co-expressed MDMX at varying relative levels. The relative expression levels of the two proteins with respect to each other were subtype-dependent. This apparently affected the detected levels of P53 directly in two distinct patterns. Diminished levels of P53 were observed when MDM2 was significantly higher in relation to MDMX, suggesting a dominant role for MDM2 in the degradation of P53. Higher levels of P53 were noted with increasing MDMX levels suggesting an interaction between MDM2 and MDMX that resulted in a reduced efficiency of MDM2 in degrading P53. Of the 26 cases of liposarcoma with elevated P53 expression, 5 were found to have a somatic mutation in the P53 gene. Conclusions: The results suggest that complex dynamic interactions between MDM2 and MDMX proteins may directly affect the cellular levels of P53. This therefore suggests that careful characterization of both these markers will be necessary in tumours when considering in vivo evaluation of novel blocker compounds for MDM proteins, as a therapeutic strategy to restore wild type P53 function
The development of cross-cultural recognition of vocal emotion during childhood and adolescence
Humans have an innate set of emotions recognised universally. However, emotion recognition also depends on socio-cultural rules. Although adults recognise vocal emotions universally, they identify emotions more accurately in their native language. We examined developmental trajectories of universal vocal emotion recognition in children. Eighty native English speakers completed a vocal emotion recognition task in their native language (English) and foreign languages (Spanish, Chinese, and Arabic) expressing anger, happiness, sadness, fear, and neutrality. Emotion recognition was compared across 8-to-10, 11-to-13-year-olds, and adults. Measures of behavioural and emotional problems were also taken. Results showed that although emotion recognition was above chance for all languages, native English speaking children were more accurate in recognising vocal emotions in their native language. There was a larger improvement in recognising vocal emotion from the native language during adolescence. Vocal anger recognition did not improve with age for the non-native languages. This is the first study to demonstrate universality of vocal emotion recognition in children whilst supporting an “in-group advantage” for more accurate recognition in the native language. Findings highlight the role of experience in emotion recognition, have implications for child development in modern multicultural societies and address important theoretical questions about the nature of emotions
Loss-of-function mutations in the X-linked biglycan gene cause a severe syndromic form of thoracic aortic aneurysms and dissections.
Thoracic aortic aneurysm and dissection (TAAD) is typically inherited in an autosomal dominant manner, but rare X-linked families have been described. So far, the only known X-linked gene is FLNA, which is associated with the periventricular nodular heterotopia type of Ehlers-Danlos syndrome. However, mutations in this gene explain only a small number of X-linked TAAD families.
We performed targeted resequencing of 368 candidate genes in a cohort of 11 molecularly unexplained Marfan probands. Subsequently, Sanger sequencing of BGN in 360 male and 155 female molecularly unexplained TAAD probands was performed.
We found five individuals with loss-of-function mutations in BGN encoding the small leucine-rich proteoglycan biglycan. The clinical phenotype is characterized by early-onset aortic aneurysm and dissection. Other recurrent findings include hypertelorism, pectus deformity, joint hypermobility, contractures, and mild skeletal dysplasia. Fluorescent staining revealed an increase in TGF-β signaling, evidenced by an increase in nuclear pSMAD2 in the aortic wall. Our results are in line with those of prior reports demonstrating that Bgn-deficient male BALB/cA mice die from aortic rupture.
In conclusion, BGN gene defects in humans cause an X-linked syndromic form of severe TAAD that is associated with preservation of elastic fibers and increased TGF-β signaling.Genet Med 19 4, 386-395
Crystal Structure of an Integron Gene Cassette-Associated Protein from Vibrio cholerae Identifies a Cationic Drug-Binding Module
Background
The direct isolation of integron gene cassettes from cultivated and environmental microbial sources allows an assessment of the impact of the integron/gene cassette system on the emergence of new phenotypes, such as drug resistance or virulence. A structural approach is being exploited to investigate the modularity and function of novel integron gene cassettes.
Methodology/Principal Findings
We report the 1.8 A crystal structure of Cass2, an integron-associated protein derived from an environmental V. cholerae. The structure defines a monomeric beta-barrel protein with a fold related to the effector-binding portion of AraC/XylS transcription activators. The closest homologs of Cass2 are multi-drug binding proteins, such as BmrR. Consistent with this, a binding pocket made up of hydrophobic residues and a single glutamate side chain is evident in Cass2, occupied in the crystal form by polyethylene glycol. Fluorescence assays demonstrate that Cass2 is capable of binding cationic drug compounds with submicromolar affinity. The Cass2 module possesses a protein interaction surface proximal to its drug-binding cavity with features homologous to those seen in multi-domain transcriptional regulators.
Conclusions/Significance
Genetic analysis identifies Cass2 to be representative of a larger family of independent effector-binding proteins associated with lateral gene transfer within Vibrio and closely-related species. We propose that the Cass2 family not only has capacity to form functional transcription regulator complexes, but represents possible evolutionary precursors to multi-domain regulators associated with cationic drug compounds.National Health and Medical Research Council (Australia) (NHMRC grant 488502)National Institutes of Health (U.S.) (Grant GM62414-0 )Ontario. Ministry of Revenue (Challenge Fund
Prognostic model to predict postoperative acute kidney injury in patients undergoing major gastrointestinal surgery based on a national prospective observational cohort study.
Background: Acute illness, existing co-morbidities and surgical stress response can all contribute to postoperative acute kidney injury (AKI) in patients undergoing major gastrointestinal surgery. The aim of this study was prospectively to develop a pragmatic prognostic model to stratify patients according to risk of developing AKI after major gastrointestinal surgery. Methods: This prospective multicentre cohort study included consecutive adults undergoing elective or emergency gastrointestinal resection, liver resection or stoma reversal in 2-week blocks over a continuous 3-month period. The primary outcome was the rate of AKI within 7 days of surgery. Bootstrap stability was used to select clinically plausible risk factors into the model. Internal model validation was carried out by bootstrap validation. Results: A total of 4544 patients were included across 173 centres in the UK and Ireland. The overall rate of AKI was 14·2 per cent (646 of 4544) and the 30-day mortality rate was 1·8 per cent (84 of 4544). Stage 1 AKI was significantly associated with 30-day mortality (unadjusted odds ratio 7·61, 95 per cent c.i. 4·49 to 12·90; P < 0·001), with increasing odds of death with each AKI stage. Six variables were selected for inclusion in the prognostic model: age, sex, ASA grade, preoperative estimated glomerular filtration rate, planned open surgery and preoperative use of either an angiotensin-converting enzyme inhibitor or an angiotensin receptor blocker. Internal validation demonstrated good model discrimination (c-statistic 0·65). Discussion: Following major gastrointestinal surgery, AKI occurred in one in seven patients. This preoperative prognostic model identified patients at high risk of postoperative AKI. Validation in an independent data set is required to ensure generalizability
DNA Suspension Arrays: Silencing Discrete Artifacts for High-Sensitivity Applications
Detection of low frequency single nucleotide polymorphisms (SNPs) has important implications in early screening for tumorgenesis, genetic disorders and pathogen drug resistance. Nucleic acid arrays are a powerful tool for genome-scale SNP analysis, but detection of low-frequency SNPs in a mixed population on an array is problematic. We demonstrate a model assay for HIV-1 drug resistance mutations, wherein ligase discrimination products are collected on a suspension array. In developing this system, we discovered that signal from multiple polymorphisms was obscured by two discrete hybridization artifacts. Specifically: 1) tethering of unligated probes on the template DNA elicited false signal and 2) unpredictable probe secondary structures impaired probe capture and suppressed legitimate signal from the array. Two sets of oligonucleotides were used to disrupt these structures; one to displace unligated reporter labels from the bead-bound species and another to occupy sequences which interfered with array hybridization. This artifact silencing system resulted in a mean 21-fold increased sensitivity for 29 minority variants of 17 codons in our model assay for mutations most commonly associated with HIV-1 drug resistance. Furthermore, since the artifacts we characterized are not unique to our system, their specific inhibition might improve the quality of data from solid-state microarrays as well as from the growing number of multiple analyte suspension arrays relying on sequence-specific nucleic acid target capture
- …
