45 research outputs found

    HHV-8 encoded LANA-1 alters the higher organization of the cell nucleus

    Get PDF
    The latency-associated nuclear antigen (LANA-1) of Human Herpes Virus 8 (HHV-8), alternatively called Kaposi Sarcoma Herpes Virus (KSHV) is constitutively expressed in all HHV-8 infected cells. LANA-1 accumulates in well-defined foci that co-localize with the viral episomes. We have previously shown that these foci are tightly associated with the borders of heterochromatin [1]. We have also shown that exogenously expressed LANA-1 causes an extensive re-organization of Hoechst 33248 DNA staining patterns of the nuclei in non-HHV-8 infected cells [2]. Here we show that this effect includes the release of the bulk of DNA from heterochromatic areas, in both human and mouse cells, without affecting the overall levels of heterochromatin associated histone H3 lysine 9 tri-methylation (3MK9H3). The release of DNA from the heterochromatic chromocenters in LANA-1 transfected mouse cells co-incides with the dispersion of the chromocenter associated methylcytosin binding protein 2 (MECP2). The localization of 3MK9H3 to the remnants of the chromocenters remains unaltered. Moreover, exogeneously expressed LANA-1 leads to the relocation of the chromocenters to the nuclear periphery, indicating extensive changes in the positioning of the chromosomal domains in the LANA-1 harboring interphase nucleus. Using a series of deletion mutants we have shown that the chromatin rearranging effects of LANA-1 require the presence of a short (57 amino acid) region that is located immediately upstream of the internal acidic repeats. This sequence lies within the previously mapped binding site to histone methyltransferase SUV39H1. We suggest that the highly concentrated LANA-1, anchored to the host genome in the nuclear foci of latently infected cells and replicated through each cell generation, may function as "epigenetic modifier". The induction of histone modification in adjacent host genes may lead to altered gene expression, thereby contributing to the viral oncogenesis

    Extended Field Laser Confocal Microscopy (EFLCM): Combining automated Gigapixel image capture with in silico virtual microscopy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Confocal laser scanning microscopy has revolutionized cell biology. However, the technique has major limitations in speed and sensitivity due to the fact that a single laser beam scans the sample, allowing only a few microseconds signal collection for each pixel. This limitation has been overcome by the introduction of parallel beam illumination techniques in combination with cold CCD camera based image capture.</p> <p>Methods</p> <p>Using the combination of microlens enhanced Nipkow spinning disc confocal illumination together with fully automated image capture and large scale <it>in silico </it>image processing we have developed a system allowing the acquisition, presentation and analysis of maximum resolution confocal panorama images of several Gigapixel size. We call the method Extended Field Laser Confocal Microscopy (EFLCM).</p> <p>Results</p> <p>We show using the EFLCM technique that it is possible to create a continuous confocal multi-colour mosaic from thousands of individually captured images. EFLCM can digitize and analyze histological slides, sections of entire rodent organ and full size embryos. It can also record hundreds of thousands cultured cells at multiple wavelength in single event or time-lapse fashion on fixed slides, in live cell imaging chambers or microtiter plates.</p> <p>Conclusion</p> <p>The observer independent image capture of EFLCM allows quantitative measurements of fluorescence intensities and morphological parameters on a large number of cells. EFLCM therefore bridges the gap between the mainly illustrative fluorescence microscopy and purely quantitative flow cytometry. EFLCM can also be used as high content analysis (HCA) instrument for automated screening processes.</p

    Doxorubicin sensitizes human tumor cells to NK and T cell-mediated killing by augmented TRAIL-receptor signaling

    Get PDF
    Doxorubicin (DOX) is an anthracycline antibiotic that is widely used to treat different types of malignancy. In this study, it was studied whether DOX could be used to render tumor cells susceptible to apoptosis by NK and T cells. Pretreatment with subapoptotic doses of DOX sensitized tumor cell lines of various histotypes to both NK and T cells resulting in a 3.7 to 32.7% increase in lysis (2.5 mean fold increase, p < 0.0001) and a 2.9 to 14.2% increase in lysis (3.0 mean-fold increase, p < 0.05), respectively. The sensitizing effect of the drug was primarily dependent on the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)/TRAIL-receptor signaling, but not on Fas-ligand, perforin, NKG2D or DNAM-1. The central role of the TRAIL signaling pathway was further supported by an increased expression of TRAIL-R2 on DOX-treated tumor cells and by downregulation of cellular FLICE inhibitory protein, the inhibitors of death receptor-mediated apoptosis. Compared to untreated cells, pretreatment of tumor cells with DOX showed increased processing and activation of caspase-8 on coculture with NK or T cells. The significance of this treatment strategy was confirmed using a xenogeneic tumor-bearing mouse model. Tumor progression was delayed in mice that received either NK cells (p < 0.05) or T cells (p < 0.0001) following DOX treatment compared to mice receiving either cell type alone. Moreover, combined infusion of both NK and T cells following DOX treatment not only delayed tumor progression but also significantly improved the long-term survival (p < 0.01). Based on these findings, it was proposed that DOX can be used to improve the efficacy of adoptive cell therapy in patients with cancer.Swedish Research CouncilEuropean Research CouncilManuscrip

    Cytotoxic drug sensitivity of Epstein-Barr virus transformed lymphoblastoid B-cells

    Get PDF
    BACKGROUND: Epstein-Barr virus (EBV) is the causative agent of immunosuppression associated lymphoproliferations such as post-transplant lymphoproliferative disorder (PTLD), AIDS related immunoblastic lymphomas (ARL) and immunoblastic lymphomas in X-linked lymphoproliferative syndrome (XLP). The reported overall mortality for PTLD often exceeds 50%. Reducing the immunosuppression in recipients of solid organ transplants (SOT) or using highly active antiretroviral therapy in AIDS patients leads to complete remission in 23–50% of the PTLD/ARL cases but will not suffice for recipients of bone marrow grafts. An additional therapeutic alternative is the treatment with anti-CD20 antibodies (Rituximab) or EBV-specific cytotoxic T-cells. Chemotherapy is used for the non-responding cases only as the second or third line of treatment. The most frequently used chemotherapy regimens originate from the non-Hodgkin lymphoma protocols and there are no cytotoxic drugs that have been specifically selected against EBV induced lymphoproliferative disorders. METHODS: As lymphoblastoid cell lines (LCLs) are well established in vitro models for PTLD, we have assessed 17 LCLs for cytotoxic drug sensitivity. After three days of incubation, live and dead cells were differentially stained using fluorescent dyes. The precise numbers of live and dead cells were determined using a custom designed automated laser confocal fluorescent microscope. RESULTS: Independently of their origin, LCLs showed very similar drug sensitivity patterns against 29 frequently used cytostatic drugs. LCLs were highly sensitive for vincristine, methotrexate, epirubicin and paclitaxel. CONCLUSION: Our data shows that the inclusion of epirubicin and paclitaxel into chemotherapy protocols against PTLD may be justified

    Cluster Analysis of Early Postnatal Biochemical Markers May Predict Development of Retinopathy of Prematurity

    No full text
    Purpose: Growth factors and inflammatory and angiogenetic proteins are involved in the development of retinopathy of prematurity (ROP). However, no early biochemical markers are in clinical use to predict ROP. By performing cluster analysis of multiple biomarkers, we aimed to determine patient groups with high and low risk for developing ROP. Methods: In total, 202 protein markers in plasma were quantified by proximity extension assay from 35 extremely preterm infants on day 2 of life. Infants were sorted in groups by automated two-dimensional hierarchical clustering of all biomarkers. ROP was classified as stages I to III with or without surgical treatment. Predictive biomarkers were evaluated by analysis of variance and detected differences by two-sided paired t-test with Bonferroni corrections for multiple comparisons. Results: Differences in 39 biochemical markers divided infants without ROP into two control groups (control 1, n = 7; control 2, n = 5; P &lt; 0.05). Sixty-six biochemical markers defined differences between the control groups (n = 13) and all ROP infants (n = 23; P &lt; 0.05). PARK7, VIM, MPO, CD69, and NEMO were markedly increased in control 1 compared to all ROP infants (P &lt; 0.001). Lower TNFRSF4 and higher HER2 and GAL appeared in infants with ROP as compared to control 1 and/or 2 (P &lt; 0.05, respectively). Conclusions: Our data suggest that early elevated levels of PARK7, VIM, MPO, CD69, and NEMO may be associated with lower risk of developing ROP. Lower levels of TNFRSF4 with higher levels of HER2 and GAL may predict ROP development. Translational Relevance: Cluster analysis of early postnatal biomarkers may help to identify infants with low or high risk of developing ROP

    Additional file 1 of Collagen type IV alpha 1 chain (COL4A1) expression in the developing human lung

    No full text
    Additional file 1: Supplement 1. The staining pattern of representative sections with COL4A1 antibodies. Lung samples from two adults and four infants were stained with two polyclonal rabbit anti-human COL4A1 antibodies, 1:300: SAB4500369 (Sigma Aldrich, USA) and PA5-85634 (Invitrogen®, USA). Both antibodies are produced against recombinant peptide residues of human COL4A1. The four infants (31, 81, 106, 93) represented the four groups. Both antibodies stained lung sections from adults with a similar pattern. According to lung sections from infants, SAB4500369 stained both intracellular and extracellular sites; in Group 1 the staining appeared extracellularly, in Group 3 intracellularly and in Group 4 both intra- and extracellularly. Group 2 had a weak staining. PA5-85634 stained extracellular sites exclusively. The staining of the extracellular sites showed the same pattern and intensity levels in the respective patients for both antibodies
    corecore