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Abstract. The secondary effects of chemotherapy, with bone marrow depression and risk of leukopenia, has traditionally been
considered being detrimental for the immune system. However, growing evidence suggests a main role for chemotherapy in
antitumor immunomodulation. With reference to cisplatin, which is the basis of neoadjuvant chemotherapy in muscle invasive
bladder cancer, four different aspects of immunomodulation has thus far been described; increased MHC class I expression,
recruitment and proliferation of effector cells, enhancement of tumor-lytic activity of cytotoxic effectors and downregulation
of immunosuppressive actors in the microenvironment. Consequently, the role of chemotherapy in cancer is changing from
a therapy solely aimed at inducing tumor cell death, to a potent inducer of immune responses and a potential future major
partaker in cancer immunotherapy. This is a great opportunity for the urological community to broaden research in this field in
order to increase knowledge, optimize and improve the neoadjuvant regimens of muscle invasive bladder cancer to ultimately
improve patient outcome.
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NEOADJUVANT CHEMOTHERAPY IN
MUSCLE INVASIVE BLADDER CANCER

The proposed rationale for neoadjuvant
chemotherapy in muscle invasive urinary blad-
der cancer (MIBC), is the early treatment of
undetected micro-metastatic disease prior to major
surgery for maximum efficacy [1]. Neoadjuvant
cisplatin based combination chemotherapy (NAC)
has been proposed to be of value for downstaging of
the primary tumor and facilitating surgical resection
during radical cystectomy (RC), however, the overall
survival benefit is only 5-8% in intention-to-treat
settings [1-3]. In contrast, complete responders
(pTONOMO) gain substantial survival benefits from
NAC [4, 5], and the early identification of responders
versus non-responders to NAC therapy is therefore
an important area of research. Furthermore, ret-
rospective evaluations of larger populations have
revealed that NAC therapy is a positive prognostic
factor also with regard to pTis, pTa and pT1 out-
comes, similar to the findings in patients with pTONO
[6]. Interestingly, a growing body of data suggests
that NAC efficacy is not only due the induction of
tumor cell death following the treatment, but also
an anti-tumoral induction of the immune system.
However, a solid connection between significant
tumor downstaging and NAC-induced/enhanced
immune responses, has yet to be demonstrated.

TUMOR IMMUNOLOGY

Mutations are at the center in the multistep process
of cancer development, resulting in the formation of
foreign proteins with the potential to be recognized
by the immune system. The massive expansion of

the tumor immunology field during the past decade,
is illustrated by the update of the Hallmarks of Can-
cer theorem, to include tumor immune evasion as an
emerging Hallmark [7]. Cancer immune surveillance
[8] is the idea that the immune system continu-
ously monitors and protects the body from developing
cancer cells. In a proposed process called immu-
noediting, a malignancy undergoes three phases: (1)
The elimination phase, during which immune surveil-
lance prevails. (2) The equilibrium phase, where
interactions between tumor cells and the immune sys-
tem result in evolutionary pressure and “editing” of
the tumor phenotype, and (3) the escape phase during
which the tumor has acquired properties (i.e. escape
mechanisms) allowing it to evade the immune system
and grow [8, 9].

Tumor escape mechanisms

Tumor evasion of anti-tumor immune responses
constitutes a challenge for future therapeutic strate-
gies. Indeed, many of the latest drug introductions in
cancer therapy directly target the natural breaks of the
immune system, the most prominent examples being
check-point inhibitors such as the monoclonal snit-
CTLA4 antibody ipilimumab and anti-PD1/PD-L1
therapies. A wide variety of tumor escape mecha-
nisms have been described including altered antigen
presentation, production of immunosuppressive fac-
tors and recruitment/induction of regulatory immune
cell populations. Here follows a brief introduction to
some of the most well studied tumor immune escape
mechanisms.

Downregulation of MHC class 1

MHC class I (MHCI) complexes present peptides
from inside the cell on the cell surface enabling the
recognition of altered antigens (so called neoanti-
gens) by cytotoxic T cells (CTLs). Activation of
CTLs triggers the release of effector substances such
as granzyme and perforin, which in turn eliminate the
tumor cells. To survive, many tumors down-regulate
or alter their MHCI expression through a variety of
different mechanisms such as deletion of the (2-
microglobulin genes, direct suppression of MHCI
gene transcription or interference with the antigen
presentation machinery such as the transporter asso-
ciated with antigen processing (TAP) [10, 11].

Induction of check point inhibitors
Feedback loops are built into a normal immune
response, in order to regulate the length and the mag-
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Fig. 1. T cell activation. Schematic illustration of the three signals
required to activate a naive T cell: 1) TCR stimulation by recog-
nition of peptide-MHC complex. 2) Costimulation through e.g.
CD28 interaction with B7 molecules such as CD80 and CD86. 3)
Cytokines that influence the type of immune response developed.

nitude of immune activation. Once a naive T cell
recognizes a tumor derived peptide presented by an
MHC molecule in a tumor draining lymph node, addi-
tional costimulatory signals such as CD80 and CD86
are needed for T cell activation (Fig. 1). During the
progression of the immune response, activation is fol-
lowed by upregulation of inhibitory receptors, such as
CTLA-4 or PD-1 that compete with the T cell activa-
tion signals, leading to a diminished T cell response.
Of note, tumors may induce and enhance the expres-
sion of CTLA-4, and PD-1/PD-L1, thus suppressing
immune activation [12, 13]. The importance of
these immune check points has been demonstrated
during recent years by the development and clin-
ical introduction of check point inhibitors such as
ipilimumab and nivolumab, targeting these specific
pathways [14, 15].

The tumor microenvironment

The tumor microenvironment is where the interac-
tions between cancer cells and the immune system
occur and it is very much connected to different
modes of tumor immune escape. For example, tumors
can actively express immune suppressive factors such
as the enzyme indoleamine 2, 3-deoxygenase (IDO)
[16], secrete immune modulating cytokines such as
TGF-B and IL-10 [11, 17], and moreover the rel-
atively hypoxic environment within the tumor, can
constitute an immunosuppressive factor in itself [18].

CYTOTOXIC CHEMOTHERAPIES AND
THE IMMUNE SYSTEM

Cancer chemotherapy has traditionally been con-
sidered detrimental to the immune system, and had
until recently not been evaluated in a broader context.
Chemotherapy associated bone marrow depression
with ensuing lymphopenia has been interpreted as a

hallmark of a weakened immune system with ensu-
ing risk for negative effects on long time survival.
However, evidence suggests that lymphopenia may
create prime conditions for restarting or re-booting
large parts of the immune system through so called
homeostasis-driven proliferation of immune cells
(promoted by cytokines such as IL-7 and IL-15). The
end effect being a diminished tolerance for the altered
self-characteristics of tumor cells [19, 20].

GENERAL ASPECTS ON
CHEMOTHERAPY-INDUCED
ANTITUMOR IMMUNOMODULATION

Chemotherapy and immunogenic cell death

Interestingly, chemotherapeutic drugs have been
shown to induce so called immunogenic cell death
(ICD) in tumor cells, ultimately resulting in aug-
mented immune responses in tumor vaccination
experiments [21]. The tumor cell goes through dif-
ferent phases during the process of ICD, starting
from the induced pre-apoptosis over apoptosis, to the
final necrotic cell. In all three phases, the immune
system interacts with damaged tumor cells in a con-
certed effort to eliminate the tumor. During the first
phase, the DCs of the host, attempt to engulf the
pre-apoptotic cell. This due to the tumor cell, after
chemotherapy induced damage, starts to expose cal-
reticulin (CRT) on the cell surface. CRT exposure
seems to determine the engulfment of dying tumor
cells by DCs, and can serve as an DC-activation
signal [22]. In the apoptotic phase, the tumor cell
releases ATP which attracts more DCs and further
leads to a process of DC maturation. In the final
necrotic phase, the cell membrane becomes more
permeable, leading to release of HMBG-1, leading
to further triggering of DCs and to enhanced T cell
immunity activation [23, 24]. Interestingly, different
chemotherapeutic regimes appear to vary in their abil-
ity to induce ICD, suggesting that optimization of
clinical chemotherapy protocols could lead to more
ICD of tumor cells in patients and consequently
better immune activation and clinical response to
treatment [21].

CISPLATIN IN THE CONTEXT OF
IMMUNOMODULATION

Since cisplatin is the main player in chemotherapy
of MIBC, the following sections will focus on the
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immunomodulatory effects described for this drug in
different settings. Of note, cisplatin as monotherapy
in MIBC is considered less efficient than combi-
nation therapy, the latter being the Gold standard
following the results of the randomized prospective
trials [2, 3] and also in a major meta-analysis of all
RCTs addressing the concept [25]. Apart from the
listed immunomodulatory effects of cisplatin, other
components in MVAC as well as in gemcitabine
stand-alone, have also been shown to render anti-
tumorous immunological effects [26, 27].

As of today, much work still remains to be done
regarding the specific immunomodulatory effects of
chemotherapy in MIBC.

Basic immunomodulatory effects of cisplatin

1. Increased MHC class I expression

Different research groups have demonstrated that
cisplatin enhances cell expression of MHC I in
experimental studies of tumor cell lines [28-31]. As
discussed previously, MHC I is vital for tumor cell
recognition and elimination by CD8™ cytotoxic T
cells, and increased expression would thus accord-
ingly promote anti-tumor immune responses.

2. Recruitment and proliferation of effector cells

Homing of effector cells to the actual target area
(i.e. to the primary tumor or metastatic deposits) is of
primary importance for an effective immune response
to occur. Experimental investigations indicate cis-
platin as a facilitator and promotor in the homing
process [32, 33].

Interestingly, a combination of cisplatin and
gemcitabine in a murine model, investigating
mesothelioma and lung cancer tumors, led to sub-
stantially increased amounts of activated CTLs, both
systematically and locally in the tumor [34].

3. Enhancement of tumor-Ilytic activity of

cytotoxic effectors

Pretreatment of CTLs with cisplatin has been
shown to increase CTL-mediated killing of tumor
cells in lymphoblastoid cell lines [35]. Further-
more, it seems cisplatin can sensitize tumor cells
to CTL-mediated killing as demonstrated in a colon
carcinoma cell line, in which the mechanism was
mediated through the upregulation of both ICAM-1
and Fas expression leading to an increase in cas-
pase 3-like protease activity and apoptosis [36].
Moreover, in a study of human lung carcinoma cell
lines with sublethal exposure to cisplatin/vinorelbine,

the sensitivity to perforin/granzyme mediated CTL-
killing was also significantly increased [37]. Another
study of cisplatin in combination with adoptive T
cell immunotherapy illustrated that cisplatin-treated
tumor cells had increased perforin-independent
permeability, leading to increased CTL-mediated
Granzyme B activity, and subsequent lethal effects
on the tumor cells [38].

4. Downregulation of immunosuppressive actors
in the microenvironment

Cisplatin has been shown to downregulate both
myeloid-derived suppressor cells (MDSC) and T
regulatory cells (Treg) in separate studies, with
postulated secondary effects on immunocompetent
cells being unhampered in their respective activ-
ity [29, 32, 37]. Lesterhuis and associates have
shown that exposure to platinum based chemother-
apy markedly reduced PD-L2 expression (T cell
inhibitory molecule programmed death receptor lig-
and 2), and the effect was determined both on DCs
as well as tumor cells. The PD-L2 downregulation
resulted in enhanced antigen-specific proliferation
and Th1 cytokine secretion, which further improved
recognition of tumor cells by T cells [39].

Experimental data indicates that cisplatin also has
a function of displaying and presenting subdominant
epitopes of tumor antigens. Thus, enhancing the pos-
sibility of the adaptive immune system (CTLs) to
recognize otherwise hidden tumor targets. This is
especially important due to the risk of immune eva-
sion of an effective immune response towards the
dominant epitope [40].

CHEMOTHERAPY-INDUCED
ANTI-TUMOR RESPONSES IN MIBC

As mentioned previously, activation of T cells
needs two signals, one provided by the MHC-
tumor peptide complex and one by costimulatory
molecules such as B7.1 (CD80) and B7.2 (CD86).
In addition, a third signal mediated by cytokines
is responsible for optimal T cell activation. Our
group previously demonstrated that cisplatin induces
release of the T cell activating cytokine IFN-3 by
APCs enhancing T cell activation [41]. Recently
we also demonstrated that doxorubicin treatment
of B cells results in increased expression of the
costimulatory molecule CD86 and increased T cell
activation [42]. Blocking CD86 with a monoclonal
antibody inhibited this T cell activation. In addi-
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tion, doxorubicin resulted in decreased production of
the anti-inflammatory cytokine IL-10. To investigate
the immunological response to doxorubicin, MIBC
patients treated with NAC were investigated, demon-
strating an increased expression of the costimulatory
molecule CD86 of B cells. Thus, doxorubicin given
as part of combination-NAC seems to support acti-
vation of T cells and anti-tumoral immune responses
[42].

FUTURE OPTIONS AND DIRECTIONS

Although tumors can be defined by patient charac-
teristics, histology and staging, this is not sufficient
to fully understand an individual’s treatment options,
especially not with regards to upcoming immunother-
apy approaches. It is important to account for the
clinical and immune characteristics of the tumor as
well as the patient’s immunological status, not only
on a group level, but ultimately for each individ-
ual patient. New evolving bladder cancer taxonomies
from different research groups [43—-45] need to be
related to corresponding immunological properties,
both in the different subgroups as well as in relation
to both innate and adaptive immune responses.

The different compartments in which the tumor
cells interact with the immunological defenses also
warrant further investigation that includes, apart from
the primary tumor, also blood, urine, bone marrow
and tumor draining lymph nodes [46, 47].

The immunomodulatory effects of chemotherapy
in bladder cancer that have been suggested during
recent years, suggest that further research is needed
to evaluate the best strategy for optimal administra-
tion of chemotherapy and its relative timing to the
ensuing RC. A tailored approach would require indi-
vidual optimization and we propose that there might
be major advantages of monitoring each patient’s
immune responses regularly during the course of
NAC-administration. Hypothetically, an inflexible
general timetable with strictly predefined doses may
otherwise lead to a suboptimal outcome in terms of
endpoints related to immune induction, efficacy on
micro-metastatic disease and even long term survival.
The starting point should be immunological charac-
terization already at time of primary diagnosis, pre-
and post-TURD, in between NAC-cycles, pre- and
post-RC and during follow up. Monitoring immuno-
logical status, developing and evaluating biomarkers
of immunogenic cell death [48] opens up for individu-
ally adapted chemotherapy regimens to optimize the

stimulatory effect of chemotherapy on the immune
system.

CONCLUSIONS

Chemotherapy, once considered only an induc-
tor of tumor cell death, can now be investigated,
measured and utilized as possible tool for cancer
immunotherapy. There are great opportunities for
the scientific urological community to broaden the
research in this field, in order to improve our knowl-
edge and optimize neoadjuvant regimens in the field
of muscle invasive bladder cancer.
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