187 research outputs found

    Size dependence of the photoinduced magnetism and long-range ordering in Prussian blue analog nanoparticles of rubidium cobalt hexacyanoferrate

    Full text link
    Nanoparticles of rubidium cobalt hexacyanoferrate (Rbj_jCok_k[Fe(CN)6_6]ln_l \cdot nH2_2O) were synthesized using different concentrations of the polyvinylpyrrolidone (PVP) to produce four different batches of particles with characteristic diameters ranging from 3 to 13 nm. Upon illumination with white light at 5 K, the magnetization of these particles increases. The long-range ferrimagnetic ordering temperatures and the coercive fields evolve with nanoparticle size. At 2 K, particles with diameters less than approximately 10 nm provide a Curie-like magnetic signal.Comment: 10 pages, 6 figures in text, expanded text and dat

    DNA cleavage site selection by Type III restriction enzymes provides evidence for head-on protein collisions following 1D bidirectional motion

    Get PDF
    DNA cleavage by the Type III Restriction–Modification enzymes requires communication in 1D between two distant indirectly-repeated recognitions sites, yet results in non-specific dsDNA cleavage close to only one of the two sites. To test a recently proposed ATP-triggered DNA sliding model, we addressed why one site is selected over another during cleavage. We examined the relative cleavage of a pair of identical sites on DNA substrates with different distances to a free or protein blocked end, and on a DNA substrate using different relative concentrations of protein. Under these conditions a bias can be induced in the cleavage of one site over the other. Monte-Carlo simulations based on the sliding model reproduce the experimentally observed behaviour. This suggests that cleavage site selection simply reflects the dynamics of the preceding stochastic enzyme events that are consistent with bidirectional motion in 1D and DNA cleavage following head-on protein collision

    Divergent evolution of male-determining loci on proto-Y chromosomes of the housefly

    Get PDF
    Houseflies provide a good experimental model to study the initial evolutionary stages of a primary sex-determining locus because they possess different recently evolved proto-Y chromosomes that contain male-determining loci (M) with the same male-determining gene, Mdmd. We investigate M-loci genomically and cytogenetically revealing distinct molecular architectures among M-loci. M on chromosome V (MV^{V}) has two intact Mdmd copies in a palindrome. M on chromosome III (MIII^{III}) has tandem duplications containing 88 Mdmd copies (only one intact) and various repeats, including repeats that are XY-prevalent. M on chromosome II (MII^{II}) and the Y (MY^{Y}) share MIII^{III}-like architecture, but with fewer repeats. MY^{Y} additionally shares MV^{V}-specific sequence arrangements. Based on these data and karyograms using two probes, one derives from MIII^{III} and one Mdmd-specific, we infer evolutionary histories of polymorphic M-loci, which have arisen from unique translocations of Mdmd, embedded in larger DNA fragments, and diverged independently into regions of varying complexity
    corecore