203 research outputs found

    A study of extended zodiacal structures

    Get PDF
    Observations of cometary dust trails and zodiacal dust bands, discovered by the Infrared Astronomical Satellite (IRAS) were analyzed in a continuing effort to understand their nature and relationship to comets, asteroids, and processes effecting those bodies. A survey of all trails observed by IRAS has been completed, and analysis of this phenomenon continues. A total of 8 trails have been associated with known short-period comets (Churyumov-Gerasimenko, Encke, Gunn, Kopff, Pons-Winnecke, Schwassmann-Wachmann 1, Tempel 1, and Tempel 2), and a few faint trails have been detected which are not associated with any known comet. It is inferred that all short-period comets may have trails, and that the trails detected were seen as a consequence of observational selection effects. Were IRAS launched today, it would likely observe a largely different set of trails. The Tempel 2 trail exhibits a small but significant excess in color temperature relative to a blackbody at the same heliocentric distance. This excess may be due to the presence of a population of small, low-beta particles deriving from large particles within the trail, or a temperature gradient over the surface of large trail particles. Trails represent the very first stage in the formation and evolution of a meteor stream, and may also be the primary mechanism by which comets contribute to the interplanetary dust complex. A mathematical model of the spatial distribution of orbitally evolved collisional debris was developed which reproduces the zodiacal dust band phenomena and was used in the analysis of dust band observations made by IRAS. This has resulted in the principal zodiacal dust bands being firmly related to the principal Hirayama asteroid families. In addition, evidence for the collisional diffusion of the orbital elements of the dust particles has been found in the case of dust generated in the Eos asteroid family

    The Steward Observatory asteroid relational database

    Get PDF
    The Steward Observatory Asteroid Relational Database (SOARD) was created as a flexible tool for undertaking studies of asteroid populations and sub-populations, to probe the biases intrinsic to asteroid databases, to ascertain the completeness of data pertaining to specific problems, to aid in the development of observational programs, and to develop pedagogical materials. To date SOARD has compiled an extensive list of data available on asteroids and made it accessible through a single menu-driven database program. Users may obtain tailored lists of asteroid properties for any subset of asteroids or output files which are suitable for plotting spectral data on individual asteroids. A browse capability allows the user to explore the contents of any data file. SOARD offers, also, an asteroid bibliography containing about 13,000 references. The program has online help as well as user and programmer documentation manuals. SOARD continues to provide data to fulfill requests by members of the astronomical community and will continue to grow as data is added to the database and new features are added to the program

    A survey of debris trails from short-period comets

    Full text link
    We observed 34 comets using the 24 micron camera on the Spitzer Space Telescope. Each image contains the nucleus and covers at least 10^6 km of each comet's orbit. Debris trails due to mm-sized or larger particles were found along the orbits of 27 comets; 4 comets had small-particle dust tails and a viewing geometry that made debris trails impossible to distinguish; and only 3 had no debris trail despite favorable observing conditions. There are now 30 Jupiter-family comets with known debris trails, of which 22 are reported in this paper for the first time. The detection rate is >80%, indicating that debris trails are a generic feature of short-period comets. By comparison to orbital calculations for particles of a range of sizes ejected over 2 yr prior to observation, we find that particles comprising 4 debris trails are typically mm-sized while the remainder of the debris trails require particles larger than this. The lower-limit masses of the debris trails are typically 10^11 g, and the median mass loss rate is 2 kg/s. The mass-loss rate in trail particles is comparable to that inferred from OH production rates and larger than that inferred from visible-light scattering in comae.Comment: accepted by Icarus; figures compressed for astro-p

    Search for Dust Emission from (24) Themis Using the Gemini-North Telescope

    Full text link
    We report the results of a search for a dust trail aligned with the orbit plane of the large main-belt asteroid (24) Themis, which has been reported to have water ice frost on its surface. Observations were obtained with the GMOS instrument on the Gemini-North Observatory in imaging mode, where we used a chip gap to block much of the light from the asteroid, allowing us to take long exposures while avoiding saturation by the object. No dust trail is detected within 2' of Themis to a 3-sigma limiting surface brightness magnitude of 29.7 mag/arcsec^2, as measured along the expected direction of the dust trail. Detailed consideration of dust ejection physics indicates that particles large enough to form a detectable dust trail were unlikely to be ejected as a result of sublimation from an object as large as Themis. We nonetheless demonstrate that our observations would have been capable of detecting faint dust emission as close as 20" from the object, even in a crowded star field. This approach could be used to conduct future searches for sublimation-generated dust emission from Themis or other large asteroids closer to perihelion than was done in this work. It would also be useful for deep imaging of collisionally generated dust emission from large asteroids at times when the visibility of dust features are expected to be maximized, such as during orbit plane crossings, during close approaches to the Earth, or following detected impact events.Comment: 11 pages, 4 figures, accepted for publication in PAS

    The Dust Trail of Comet 67P/Churyumov-Gerasimenko between 2004 and 2006

    Full text link
    We report on observations of the dust trail of comet 67P/Churyumov-Gerasimenko (CG) in visible light with the Wide Field Imager at the ESO/MPG 2.2m telescope at 4.7 AU before aphelion, and at 24 micron with the MIPS instrument on board the Spitzer Space Telescope at 5.7 AU both before and after aphelion. The comet did not appear to be active during our observations. Our images probe large dust grains emitted from the comet that have a radiation pressure parameter beta<0.01. We compare our observations with simulated images generated with a dynamical model of the cometary dust and constrain the emission speeds, size distribution, production rate and geometric albedo of the dust. We achieve the best fit to our data with a differential size distribution exponent of -4.1, and emission speeds for a beta=0.01 particle of 25 m/s at perihelion and 2 m/s at 3 AU. The dust production rate in our model is on the order of 1000 kg/s at perihelion and 1 kg/s at 3 AU, and we require a dust geometric albedo between 0.022 and 0.044. The production rates of large (>10 micron) particles required to reproduce the brightness of the trail are sufficient to also account for the coma brightness observed while the comet was inside 3 AU, and we infer that the cross-section in the coma of CG may be dominated by grains of the order of 60-600 micron.Comment: 79 pages, 13 figures, 6 tables. Accepted for publication in Icaru

    Distribution and properties of fragments and debris from the split comet 73P/Schwassmann-Wachmann 3 as revealed by Spitzer Space Telescope

    Full text link
    During 2006 Mar - 2007 Jan, we used the IRAC and MIPS instruments on the Spitzer Space Telescope to study the infrared emission from the ensemble of fragments, meteoroids, and dust tails in the more than 3 degree wide 73P/Schwassmann-Wachmann 3 debris field. We also investigated contemporaneous ground based and HST observations. In 2006 May, 55 fragments were detected in the Spitzer image. The wide spread of fragments along the comet's orbit indicates they were formed from the 1995 splitting event. While the number of major fragments in the Spitzer image is similar to that seen from the ground by optical observers, the correspondence between the fragments with optical astrometry and those seen in the Spitzer images cannot be readily established, due either to strong non-gravitational terms, astrometric uncertainties, or transience of the fragments outgassing. The Spitzer data resolve the structure of the dust comae at a resolution of 1000 km, and they reveal the infrared emission due to large (mm to cm size) particles in a continuous dust trail that closely follows the projected orbit. We detect fluorescence from outflowing CO2 gas from the largest fragments (B and C), and we measure the CO2:H2O proportion (1:10 and 1:20, respectively). Three dimensionless parameters to explain dynamics of the solid particles: alpha (sublimation reaction), beta (radiation pressure), and nu (ejection velocity). The major fragments have nu>alpha>beta and are dominated by the kinetic energy imparted to them by the fragmentation process. The small, ephemeral fragments seen by HST in the tails of the major fragments have alpha>nu>beta dominated by rocket forces. The meteoroids along the projected orbit have beta~nu>>alpha. Dust in the fragments' tails has beta>>(nu+alpha) and is dominated by radiation pressure.Comment: accepted 5/13/09 by Icaru

    The formation of Encke meteoroids and dust trail

    Full text link
    We observed comet 2P/Encke with the Infrared Space Observatory ISOCAM on July 14, 1997 from a particularly favorable viewing geometry above the comet's orbital plane and at a distance of 0.25 AU. A structured coma was observed, along with a long, straight dust trail. For the first time, we are able to observe the path of particles as they evolve from the nucleus to the trail. The particles that produce the infrared coma are large, with a radiation to gravitational force ratio betamm-sized particles). The dust trail follows the orbit of the comet across our image, with a central core that is 20,000 km wide, composed of particles with beta<1e-5 (size 5\sim 5 cm) from previous apparitions. The abundant large particles near the comet pose a significant hazard to spacecraft. There is no evidence of a classical cometary dust tail due to small particles with beta>0.001, in marked contrast to other comets like P/Halley or C/Hale-Bopp. The structure of the coma requires anisotropic emission and that the spin axis of the nucleus to be nearly parallel to the orbital plane, resulting in strong seasonal variations of the particle emission. While most of the infrared coma emission is due to dust produced during the 1997 apparition, the core of the dust trail requires emissions from previous apparitions. The total mass lost during the 1997 apparition is estimated to be 2-6e13 g. Comparing to the gas mass loss from ultraviolet observations, the dust-to-gas mass ratio is 10-30, much higher than has ever been suggested from visual light observations. Using the recently-measured nuclear diameter, we find that Encke can only last 3000-10,000 rhoN yr (where rhoN is the nuclear density in g/cc) at its present mass loss rate.Comment: manuscript in TeX, 10 figures (6 ps, 4 jpg); accepted by Icarus July 3, 200

    The Surfaces of Pluto and Charon

    Get PDF
    Much of the surface of Pluto consists of high-albedo regions covered to an unknown depth by Beta-N2, contaminated with CH4, CO, and other molecules. A portion of the exposed surface appears to consist of solid H2O. The remainder is covered by lower albedo material of unknown composition. The N2 ice may occur as polar caps of large extent, leaving ices and other solids of lower volatility in the equatorial regions. The low-albedo material found primarily in the equatorial regions may consist in part of solid hydrocarbons and nitriles produced from N2 and CH4 in the atmosphere or in the surface ices. Alternatively, it may arise from deposition from impacting bodies and/or the chemistry of the impact process itself. Charon's surface is probably more compositionally uniform than that of Pluto, and is covered by H2O ice with possible contaminants or exposures of other materials that are as yet unidentified. The molecular ices discovered on Pluto and Charon have been identified from near-infrared spectra obtained with Earth-based telescopes. The quantitative interpretation of those data has been achieved through the computation of synthetic spectra using the Hapke scattering theory and the optical constants of various ices observed in the laboratory. Despite limitations imposed by the availability of laboratory data on ices in various mixtures, certain specific results have been obtained. It appears that CH4 and CO are trace constituents, and that some fraction of the CH4 (and probably the CO) on Pluto is dissolved in the matrix of solid N2. Pure CH4 probably also occurs on Pluto's surface, allowing direct access to the atmosphere. Study of the nitrogen absorption band at 2.148 micrometers shows that the temperature of the N2 in the present epoch is 40 +/-2 K. The global temperature regime of Pluto can be modeled from observations of the thermal flux at far-infrared and millimeter wavelengths. The low-albedo equatorial regions must be significantly warmer than the polar regions covered by N2 (at T = 40 K) to account for the total thermal flux measured. At the present season, the diurnal skin depth of the insolation-driven thermal wave is small, and the observed mm-wave fluxes may arise from a greater depth. Alternatively, the mm-wave flux may arise from the cool, sublimation source region. The surface microstructure in the regions covered by N2 ice is likely governed by the sintering properties of this highly volatile material. The observed nitrogen infrared band strength requires that expanses of the surface be covered with cm-sized crystals of N2. Grains of H2O ice on Charon, in contrast, are probably of order 50 micrometers in size, and do not metamorphose into larger grains at a significant rate. Because of the similarities in size, density, atmosphere and surface composition between Pluto and Neptune's satellite Triton, the surface structures observed by Voyager on Triton serve as a plausible paradigm for what might be expected on Pluto. Such crater forms, tectonic structures, aeolian features, cryovolcanic structures, and sublimation-degraded topography as are eventually observed on Pluto and Charon by spacecraft will give information on their interior compositions and structures, as well as on the temperature and wind regimes over the planet's extreme seasonal cycle

    the geomorphology of ceres

    Get PDF
    ### INTRODUCTION Observations of Ceres, the largest object in the asteroid belt, have suggested that the dwarf planet is a geologically differentiated body with a silicate core and an ice-rich mantle. Data acquired by the Dawn spacecraft were used to perform a three-dimensional characterization of the surface to determine if the geomorphology of Ceres is consistent with the models of an icy interior. ### RATIONALE Instruments on Dawn have collected data at a variety of resolutions, including both clear-filter and color images. Digital terrain models have been derived from stereo images. A preliminary 1:10 M scale geologic map of Ceres was constructed using images obtained during the Approach and Survey orbital phases of the mission. We used the map, along with higher-resolution imagery, to assess the geology of Ceres at the global scale, to identify geomorphic and structural features, and to determine the geologic processes that have affected Ceres globally. ### RESULTS Impact craters are the most prevalent geomorphic feature on Ceres, and several of the craters have fractured floors. Geomorphic analysis of the fracture patterns shows that they are similar to lunar Floor-Fractured Craters (FFCs), and an analysis of the depth-to-diameter ratios shows that they are anomalously shallow compared with average Ceres craters. Both of these factors are consistent with FFC floors being uplifted due to an intrusion of cryomagma. Kilometer-scale linear structures cross much of Ceres. Some of these structures are oriented radially to large craters and most likely formed due to impact processes. However, a set of linear structures present only on a topographically high region do not have any obvious relationship to impact craters. Geomorphic analysis suggests that they represent subsurface faults and might have formed due to crustal uplift by cryomagmatic intrusion. Domes identified across the Ceres surface present a wide range of sizes ( 100 km), basal shapes, and profiles. Whether a single formation mechanism is responsible for their formation is still an open question. Cryovolcanic extrusion is one plausible process for the larger domes, although most small mounds (<10-km diameter) are more likely to be impact debris. Differences in lobate flow morphology suggest that multiple emplacement processes have operated on Ceres, where three types of flows have been identified. Type 1 flows are morphologically similar to ice-cored flows on Earth and Mars. Type 2 flows are comparable to long-runout landslides. Type 3 flows morphologically resemble the fluidized ejecta blankets of rampart craters, which are hypothesized to form by impact into ice-rich ground. ### CONCLUSION The global trend of lobate flows suggests that differences in their geomorphology could be explained by variations in ice content and temperature at the near surface. Geomorphic and topographic analyses of the FFCs suggest that cryomagmatism is active on Ceres, whereas the large domes are possibly formed by extrusions of cryolava. Although spectroscopic analysis to date has identified water ice in only one location on Ceres, the identification of these potentially ice-related features suggests that there may be more ice within localized regions of Ceres' crust. ![Figure][1] Dawn high-altitude mapping orbit imagery (140 meters per pixel) of example morphologic features. ( A ) Occator crater; arrows point to floor fractures. ( B ) Linear structures, denoted by arrows. ( C ) A large dome at 42° N, 10° E, visible in the elevation map. ( D ) A small mound at 45.5° S, 295.7° E. ( E ) Type 1 lobate flow; arrows point to the flow front. Analysis of Dawn spacecraft Framing Camera image data allows evaluation of the topography and geomorphology of features on the surface of Ceres. The dwarf planet is dominated by numerous craters, but other features are also common. Linear structures include both those associated with impact craters and those that do not appear to have any correlation to an impact event. Abundant lobate flows are identified, and numerous domical features are found at a range of scales. Features suggestive of near-surface ice, cryomagmatism, and cryovolcanism have been identified. Although spectroscopic analysis has currently detected surface water ice at only one location on Ceres, the identification of these potentially ice-related features suggests that there may be at least some ice in localized regions in the crust. [1]: pending:ye
    corecore