49 research outputs found

    Dysfunctional prefrontal cortical network activity and interactions following cannabinoid receptor activation

    Get PDF
    Coordinated activity spanning anatomically distributed neuronal networks underpins cognition and mediates limbic-cortical interactions during learning, memory, and decision-making. We used CP55940, a potent agonist of brain cannabinoid receptors known to disrupt coordinated activity in hippocampus, to investigate the roles of network oscillations during hippocampal and medial prefrontal cortical (mPFC) interactions in rats. During quiet wakefulness and rest, CP55940 dose-dependently reduced 0.1-30 Hz local field potential power in CA1 of the hippocampus while concurrently decreasing 30-100 Hz power in mPFC; these contrasting population-level effects were paralleled by differential effects on underlying single-unit activity in the two structures. During decision-making phases of a spatial working memory task, CP5540-induced deficits in hippocampal theta and prefrontal gamma oscillations were observed alongside disrupted theta-frequency coherence between the two structures. These changes in coordinated limbic-cortical network activities correlated with (1) reduced accuracy of task performance, (2) impaired phase-locking of prefrontal single-unit spiking to the local gamma and hippocampal theta rhythms, and (3) impaired task-dependent activity in a subset of mPFC units. In addition to highlighting the importance of CA1-mPFC network oscillations for cognition, these results implicate disrupted theta-frequency coordination of CA1-mPFC activity in the cognitive deficits caused by exogenous activation of brain cannabinoid receptors

    Decoupling of Sleep-Dependent Cortical and Hippocampal Interactions in a Neurodevelopmental Model of Schizophrenia

    Get PDF
    SummaryRhythmic neural network activity patterns are defining features of sleep, but interdependencies between limbic and cortical oscillations at different frequencies and their functional roles have not been fully resolved. This is particularly important given evidence linking abnormal sleep architecture and memory consolidation in psychiatric diseases. Using EEG, local field potential (LFP), and unit recordings in rats, we show that anteroposterior propagation of neocortical slow-waves coordinates timing of hippocampal ripples and prefrontal cortical spindles during NREM sleep. This coordination is selectively disrupted in a rat neurodevelopmental model of schizophrenia: fragmented NREM sleep and impaired slow-wave propagation in the model culminate in deficient ripple-spindle coordination and disrupted spike timing, potentially as a consequence of interneuronal abnormalities reflected by reduced parvalbumin expression. These data further define the interrelationships among slow-wave, spindle, and ripple events, indicating that sleep disturbances may be associated with state-dependent decoupling of hippocampal and cortical circuits in psychiatric diseases

    Improving Translational Relevance in Preclinical Psychopharmacology (iTRIPP)

    Get PDF
    Animal models are important in preclinical psychopharmacology to study mechanisms and potential treatments for psychiatric disorders. A working group of 14 volunteers, comprising an international team of researchers from academia and industry, convened in 2021 to discuss how to improve the translational relevance and interpretation of findings from animal models that are used in preclinical psychopharmacology. The following paper distils the outcomes of the working group’s discussions into 10 key considerations for the planning and reporting of behavioural studies in animal models relevant to psychiatric disorders. These form the iTRIPP guidelines (Improving Translational Relevance In Preclinical Psychopharmacology). These guidelines reflect the key considerations that the group thinks will likely have substantial impact in terms of improving the translational relevance of behavioural studies in animal models that are used to study psychiatric disorders and their treatment. They are relevant to the research community when drafting and reviewing manuscripts, presentations and grant applications. The iTRIPP guidelines are intended to complement general recommendations for planning and reporting animal studies that have been published elsewhere, by enabling researchers to fully consider the most appropriate animal model for the research purpose and to interpret their findings appropriately. This in turn will increase the clinical benefit of such research and is therefore important not only for the scientific community but also for patients and the lay public

    Assessing the Cognitive Translational Potential of a Mouse Model of the 22q11.2 Microdeletion Syndrome.

    Get PDF
    A chromosomal microdeletion at the 22q11.2 locus is associated with extensive cognitive impairments, schizophrenia and other psychopathology in humans. Previous reports indicate that mouse models of the 22q11.2 microdeletion syndrome (22q11.2DS) may model the genetic basis of cognitive deficits relevant for neuropsychiatric disorders such as schizophrenia. To assess the models usefulness for drug discovery, a novel mouse (Df(h22q11)/+) was assessed in an extensive battery of cognitive assays by partners within the NEWMEDS collaboration (Innovative Medicines Initiative Grant Agreement No. 115008). This battery included classic and touchscreen-based paradigms with recognized sensitivity and multiple attempts at reproducing previously published findings in 22q11.2DS mouse models. This work represents one of the most comprehensive reports of cognitive functioning in a transgenic animal model. In accordance with previous reports, there were non-significant trends or marginal impairment in some tasks. However, the Df(h22q11)/+ mouse did not show comprehensive deficits; no robust impairment was observed following more than 17 experiments and 14 behavioral paradigms. Thus - within the current protocols - the 22q11.2DS mouse model fails to mimic the cognitive alterations observed in human 22q11.2 deletion carriers. We suggest that the 22q11.2DS model may induce liability for cognitive dysfunction with additional "hits" being required for phenotypic expression.The research leading to these results has received support from the Innovative Medicine Initiative Joint Undertaking under grant agreement No. 115008 of which resources are composed of EFPIA in-kind contribution and financial contribution from the European Union’s Seventh Framework Programme (FP7/ 2007–2013). The Behavioural and Clinical Neuroscience Institute is co-funded by the Medical Research Council and the Df(h22q11)/+ and the Wellcome Trust.This is the final version of the article. It first appeared from OUP at http://dx.doi.org/10.1093/cercor/bhw229

    Improving Translational Relevance in Preclinical Psychopharmacology (iTRIPP)

    Get PDF
    Animal models are important in preclinical psychopharmacology to study mechanisms and potential treatments for psychiatric disorders. A working group of 14 volunteers, comprising an international team of researchers from academia and industry, convened in 2021 to discuss how to improve the translational relevance and interpretation of findings from animal models that are used in preclinical psychopharmacology. The following paper distils the outcomes of the working group’s discussions into 10 key considerations for the planning and reporting of behavioural studies in animal models relevant to psychiatric disorders. These form the iTRIPP guidelines (Improving Translational Relevance In Preclinical Psychopharmacology). These guidelines reflect the key considerations that the group thinks will likely have substantial impact in terms of improving the translational relevance of behavioural studies in animal models that are used to study psychiatric disorders and their treatment. They are relevant to the research community when drafting and reviewing manuscripts, presentations and grant applications. The iTRIPP guidelines are intended to complement general recommendations for planning and reporting animal studies that have been published elsewhere, by enabling researchers to fully consider the most appropriate animal model for the research purpose and to interpret their findings appropriately. This in turn will increase the clinical benefit of such research and is therefore important not only for the scientific community but also for patients and the lay public

    The IMPROVE guidelines (Ischaemia Models: Procedural Refinements Of in Vivo Experiments)

    Get PDF
    Most in vivo models of ischaemic stroke target the middle cerebral artery and a spectrum of stroke severities, from mild to substantial, can be achieved. This review describes opportunities to improve the in vivo modelling of ischaemic stroke and animal welfare. It provides a number of recommendations to minimise the level of severity in the most common rodent models of middle cerebral artery occlusion, while sustaining or improving the scientific outcomes. The recommendations cover basic requirements pre-surgery, selecting the most appropriate anaesthetic and analgesic regimen, as well as intraoperative and post-operative care. The aim is to provide support for researchers and animal care staff to refine their procedures and practices, and implement small incremental changes to improve the welfare of the animals used and to answer the scientific question under investigation. All recommendations are recapitulated in a summary poster (see supplementary information)

    Effect of a Perioperative, Cardiac Output-Guided Hemodynamic Therapy Algorithm on Outcomes Following Major Gastrointestinal Surgery A Randomized Clinical Trial and Systematic Review

    Get PDF
    Importance: small trials suggest that postoperative outcomes may be improved by the use of cardiac output monitoring to guide administration of intravenous fluid and inotropic drugs as part of a hemodynamic therapy algorithm.Objective: to evaluate the clinical effectiveness of a perioperative, cardiac output–guided hemodynamic therapy algorithm.Design, setting, and participants: OPTIMISE was a pragmatic, multicenter, randomized, observer-blinded trial of 734 high-risk patients aged 50 years or older undergoing major gastrointestinal surgery at 17 acute care hospitals in the United Kingdom. An updated systematic review and meta-analysis were also conducted including randomized trials published from 1966 to February 2014.Interventions: patients were randomly assigned to a cardiac output–guided hemodynamic therapy algorithm for intravenous fluid and inotrope (dopexamine) infusion during and 6 hours following surgery (n=368) or to usual care (n=366).Main outcomes and measures: the primary outcome was a composite of predefined 30-day moderate or major complications and mortality. Secondary outcomes were morbidity on day 7; infection, critical care–free days, and all-cause mortality at 30 days; all-cause mortality at 180 days; and length of hospital stay.Results: baseline patient characteristics, clinical care, and volumes of intravenous fluid were similar between groups. Care was nonadherent to the allocated treatment for less than 10% of patients in each group. The primary outcome occurred in 36.6% of intervention and 43.4% of usual care participants (relative risk [RR], 0.84 [95% CI, 0.71-1.01]; absolute risk reduction, 6.8% [95% CI, ?0.3% to 13.9%]; P?=?.07). There was no significant difference between groups for any secondary outcomes. Five intervention patients (1.4%) experienced cardiovascular serious adverse events within 24 hours compared with none in the usual care group. Findings of the meta-analysis of 38 trials, including data from this study, suggest that the intervention is associated with fewer complications (intervention, 488/1548 [31.5%] vs control, 614/1476 [41.6%]; RR, 0.77 [95% CI, 0.71-0.83]) and a nonsignificant reduction in hospital, 28-day, or 30-day mortality (intervention, 159/3215 deaths [4.9%] vs control, 206/3160 deaths [6.5%]; RR, 0.82 [95% CI, 0.67-1.01]) and mortality at longest follow-up (intervention, 267/3215 deaths [8.3%] vs control, 327/3160 deaths [10.3%]; RR, 0.86 [95% CI, 0.74-1.00]).Conclusions and relevance: in a randomized trial of high-risk patients undergoing major gastrointestinal surgery, use of a cardiac output–guided hemodynamic therapy algorithm compared with usual care did not reduce a composite outcome of complications and 30-day mortality. However, inclusion of these data in an updated meta-analysis indicates that the intervention was associated with a reduction in complication rate
    corecore