5,223 research outputs found

    Dynamic range and mass accuracy of wide-scan direct infusion nanoelectrospray fourier transform ion cyclotron resonance mass spectrometry-based metabolomics increased by the spectral stitching method

    Get PDF
    Direct infusion nanoelectrospray Fourier transform ion cyclotron resonance mass spectrometry (DI nESI FT-ICR MS)offers high mass accuracy and resolution for analyzing complex metabolite mixtures. High dynamic range across a wide mass range, however, can only be achieved at the expense of mass accuracy, since the large numbers of ions entering the ICR detector induce adverse spacecharge effects. Here we report an optimized strategy for wide-scan DI nESI FT-ICR MS that increases dynamic range but maintains high mass accuracy. It comprises the collection if multiple adjacent selected ion monitoring (SIM) windows that are stitched together using novel algorithms. The final SIM-stitching method, derived from several optimization experiments, comprises 21 adjoining SIM windows each of width m/z 30 (from m/z 70 to 500; adjacent windows overlap by m/z 10) with an automated gain control (AGC) target of 1 105 charges. SIMstitching and wide-scan range (WSR; Thermo Electron)were compared using a defined standard to assess mass accuracy and a liver extract to assess peak count and dynamic range. SIM-stitching decreased the maximum mass error by 1.3- and 4.3-fold, and increased the peak count by 5.3- and 1.8-fold, versus WSR (AGC targets of 1 x 105 and 5 x 105, respectively). SIM-stitching achieved an rms mass error of 0.18 ppm and detected over 3000 peaks in liver extract. This novel approach increases metabolome coverage, has very high mass accuracy, and at 5.5 min/sample is conducive for high- throughput metabolomics

    Great Lakes all-weather ice information system

    Get PDF
    A system is described which utilizes an X-band Side-Looking-Airborne-Radar (SLAR) for determining type, location, and aerial distribution of the ice cover in the Great Lakes and an airborne, S-band, short pulse radar for obtaining ice thickness. The SLAR system is currently mounted aboard a U.S. Coast Guard C-130B aircraft. Digitized SLAR data are relayed in real-time via the NOAA-GOES-1 satellite in geosynchronous orbit to the U.S. Coast Guard Ice Center in Cleveland, Ohio. SLAR images along with hand-drawn interpretative ice charts for various winter shipping areas in the Great Lakes are broadcast to facsimile recorders aboard Great Lakes vessels. The operational aspects of this ice information system are being demonstrated by NASA, U.S. Coast Guard, and NOAA/National Weather Service. Results from the 1974-75 winter season demonstrated the ability of this system to provide all-weather ice information to shippers in a timely manner

    Electrical Conductivity, Relaxation and the Glass Transition: A New Look at a Familiar Phenomenon

    Get PDF
    Annealed samples from a single melt of a 10 mol% K2O-90SiO2 glass were reheated to temperatures ranging from 450 to 800 C, held isothermally for 20 min, and then quenched in either air or a silicon oil bath. The complex impedance of both the annealed and quenched samples was measured as a function of temperature from 120 to 250 C using ac impedance spectroscopy from 1 Hz to 1 MHz. The dc conductivity, sigma(sub dc), was measured from the low frequency intercept of depressed semicircle fits to the complex impedance data. When the sigma(sub dc) at 150 C was plotted against soak temperature, the results fell into three separate regions that are explained in terms of the glass structural relaxation time, tau(sub S). This sigma(sub dc) plot provides a new way to look the glass transition range, Delta T(sub r). In addition, sigma(sub dc) was measured for different soak times at 550 C, from which an average relaxation time of 7.3 min was calculated. It was found that the size and position of the Delta T(sub r) is controlled by both the soak time and cooling rate

    Recovery From Monocular Deprivation Using Binocular Deprivation: Experimental Observations and Theoretical Analysis

    Get PDF
    Ocular dominance (OD) plasticity is a robust paradigm for examining the functional consequences of synaptic plasticity. Previous experimental and theoretical results have shown that OD plasticity can be accounted for by known synaptic plasticity mechanisms, using the assumption that deprivation by lid suture eliminates spatial structure in the deprived channel. Here we show that in the mouse, recovery from monocular lid suture can be obtained by subsequent binocular lid suture but not by dark rearing. This poses a significant challenge to previous theoretical results. We therefore performed simulations with a natural input environment appropriate for mouse visual cortex. In contrast to previous work we assume that lid suture causes degradation but not elimination of spatial structure, whereas dark rearing produces elimination of spatial structure. We present experimental evidence that supports this assumption, measuring responses through sutured lids in the mouse. The change in assumptions about the input environment is sufficient to account for new experimental observations, while still accounting for previous experimental results

    The Canadian Federation of Earth Sciences Scientific Statement on Climate Change – Its Impacts in Canada, and the Critical Role of Earth Scientists in Mitigation and Adaptation

    Get PDF
    The Canadian Federation of Earth Sciences (CFES) has issued this statement to summarize the science, effects, and implications of climate change. We highlight the role of Earth scientists in documenting and mitigating climate change, and in managing and adapting to its consequences in Canada. CFES is the coordinated voice of Canada’s Earth Sciences community with 14 member organizations representing some 15,000 geoscientists. Our members are drawn from academia, industry, education, and government. The mission of CFES is to ensure decision makers and the public understand the contributions of Earth Science to Canadian society and the economy.  Climate change has become a national and global priority for all levels of government. The geological record shows us that the global climate has changed throughout Earth’s history, but the current rates of change are almost unprecedented. Over the last 70 years, levels of common greenhouse gases (GHGs) in the atmosphere have steadily increased. Carbon dioxide (CO2) concentration is now 418 parts per million — its highest of the last three million years. The chemical (isotopic) composition of carbon in the atmosphere indicates the increase in GHGs is due to burning fossil fuels. GHGs absorb energy emitted from Earth’s surface and re-radiate it back, warming the lower levels of the atmosphere. Climatic adjustments that have recently occurred are, in practical terms, irreversible, but further change can be mitigated by lowering emissions of GHGs.  Climate change is amplified by three important Earth system processes and effects. First, as the climate warms evaporation increases, raising atmospheric concentrations of water vapour, itself a GHG — and adding to warming. Second, loss of ice cover from the polar ice sheets and glaciers exposes larger areas of land and open water — leading to greater absorption of heat from the sun. Third, thawing of near-surface permafrost releases additional GHGs (primarily CO2 and methane) during decay of organic matter previously preserved frozen in the ground. Some impacts of climate change are incremental and steadily occurring, such as melting of glaciers and ice sheets, with consequent sea level rise. Others are intermittent, such as extreme weather events, like hurricanes — but are becoming more frequent. Summer water shortages are increasingly common in western Canada as mountain snowpacks melt earlier and summer river flows decline. In northern Canada, warming and thawing of near-surface permafrost has led to deterioration of infrastructure and increased costs for buildings that now require chilled foundations. Other consequences of unchecked climate change include increased coastal erosion, increases in the number and size of wildfires, and reduction in winter road access to isolated northern communities. Reductions in net GHG emissions are urgently required to mitigate the many effects of further climate change. Industrial and public works development projects must now assess the effects of climate change in their planning, design, and management. Cities, municipalities, and rural communities need to plan new residential development carefully to avoid enhanced risk of flooding, coastal erosion, or wildfire.  Earth Science knowledge and expertise is integral to exploration and development of new metals and Earth materials required for a carbon-neutral future, and in the capture and storage of CO2 within the Earth. Earth Science is also central to society’s adaptation to new climatic regimes and reduction of risks. This includes anticipation, assessment, and management of extreme events, development of new standards and guidelines for geotechnical and engineering practice, and revision to regulations that consider climate change. Geoscientists also have an important role in the education of students and the public on the reasons for necessary action. Canada is uniquely positioned with its strong global geoscientific leadership, its vast landmass, and its northern terrain to effectively leverage research activities around climate change. Geoscience tools and geoscientists’ skills will be integral to Canada’s preparation for climate change.La Fédération canadienne des sciences de la Terre (FCST) a publié ce communiqué pour résumer la science, les effets et les implications des changements climatiques. Nous soulignons le rôle des scientifiques en science de la Terre dans la documentation et l'atténuation des changements climatiques, ainsi que dans la gestion de leurs conséquences et la création de mesures d'adaptation au Canada. La FCST est la voix coordonnée de la communauté canadienne des sciences de la Terre avec 14 organisations membres représentant environ 15 000 géoscientifiques. Nos membres sont issus du milieu universitaire, de l'industrie, de l'éducation et du gouvernement. La mission de la FCST est de s'assurer que les décideurs et le public comprennent les contributions des sciences de la Terre à la société canadienne et à l'économie.  Les changements climatiques sont devenus une priorité nationale et mondiale à tous les niveaux de gouvernement. Les archives géologiques nous montrent que le climat mondial a changé tout au long de l'histoire de la Terre, mais les taux de changement actuels sont presque sans précédent. Au cours des 70 dernières années, les niveaux de gaz à effet de serre (GES) communs dans l'atmosphère n'ont cessé d'augmenter. La concentration de dioxyde de carbone (CO2) est maintenant de 418 parties par million - son plus haut niveau des trois derniers millions d'années. La composition chimique (isotopique) du carbone dans l'atmosphère indique que l'augmentation des GES est due à la combustion de combustibles fossiles. Les GES absorbent l'énergie émise par la surface de la Terre et la réfléchissent, réchauffant les niveaux inférieurs de l'atmosphère. Les modifications climatiques qui se sont produits récemment sont, concrètement, irréversibles, mais les changements additionnels peuvent être atténués en réduisant les émissions de GES.  Les changements climatiques sont amplifiés par trois processus et effets importants du système terrestre. Premièrement, à mesure que le climat se réchauffe, l'évaporation augmente, ce qui augmente les concentrations atmosphériques de vapeur d'eau, elle-même un GES, et contribue au réchauffement. Deuxièmement, la perte de la couverture de glace des calottes glaciaires polaires et des glaciers expose de plus grandes superficies de terre et d'eau libre, ce qui entraîne une plus grande absorption de la chaleur du soleil. Troisièmement, le dégel du pergélisol proche de la surface libère des GES supplémentaires (principalement du CO2 et du méthane) lors de la décomposition de la matière organique jusqu’alors préservée gelée dans le sol. Certains impacts des changements climatiques sont progressifs et se produisent régulièrement, comme la fonte des glaciers et des calottes glaciaires, avec pour conséquence une élévation du niveau de la mer. D'autres sont intermittents, comme les événements météorologiques extrêmes, tels que les ouragans, mais deviennent de plus en plus fréquents. Les pénuries d'eau en été sont de plus en plus courantes dans l'ouest du Canada, car le manteau neigeux des montagnes fond plus tôt et le débit des rivières en été diminue. Dans le nord du Canada, le réchauffement et le dégel du pergélisol proche de la surface ont entraîné une détérioration des infrastructures et une augmentation des coûts des bâtiments qui nécessitent maintenant des fondations réfrigérées. Les autres conséquences des changements climatiques incontrôlés comprennent l'augmentation de l'érosion côtière, l'augmentation du nombre et de la taille des incendies de forêt et la réduction de l'accès aux routes d’hiver aux collectivités isolées du Nord. Des réductions des émissions nettes de GES sont nécessaires de toute urgence pour atténuer les nombreux effets de nouveaux changements climatiques. Les projets de développement industriel et de travaux publics doivent désormais évaluer les effets des changements climatiques dans leur planification, leur conception et leur gestion. Les villes, les municipalités et les communautés rurales doivent planifier soigneusement les nouveaux développements résidentiels pour éviter les risques accrus d'inondation, d'érosion côtière ou d'incendie de forêt.  Les connaissances et l'expertise en sciences de la Terre font partie intégrante de l'exploration et du développement de nouveaux métaux et matériaux terrestres requis pour un avenir neutre en carbone, ainsi que dans la capture et la séquestration du CO2 dans la Terre. Les sciences de la Terre sont également au cœur de l'adaptation de la société aux nouveaux régimes climatiques et de la réduction des risques. Cela comprend l'anticipation, l'évaluation et la gestion des événements extrêmes, l'élaboration de nouvelles normes et directives pour les pratiques géotechniques et d'ingénierie, et la révision des réglementations qui tient compte des changements climatiques. Les géoscientifiques ont également un rôle important dans l'éducation des étudiants et du public sur le fondement des mesures nécessaires. Le Canada occupe une position unique grâce à son solide leadership géoscientifique mondial, sa vaste étendue et son territoire nordique pour tirer efficacement parti des activités de recherche sur les changements climatiques. Les outils géoscientifiques et les compétences des géoscientifiques feront partie intégrante de la préparation du Canada aux changements climatiques

    Improved fidelity of triggered entangled photons from single quantum dots

    Get PDF
    We demonstrate the on-demand emission of polarisation-entangled photon pairs from the biexciton cascade of a single InAs quantum dot embedded in a GaAs/AlAs planar microcavity. Improvements in the sample design blue shifts the wetting layer to reduce the contribution of background light in the measurements. Results presented show that >70% of the detected photon pairs are entangled. The high fidelity of the (|HxxHx>+|VxxVx>)/2^0.5 state that we determine is sufficient to satisfy numerous tests for entanglement. The improved quality of entanglement represents a significant step towards the realisation of a practical quantum dot source compatible with applications in quantum information.Comment: 9 pages. Paper is available free of charge at http://www.iop.org/EJ/abstract/1367-2630/8/2/029/, see also 'A semiconductor source of triggered entangled photon pairs', R. M. Stevenson et al., Nature 439, 179 (2006

    Lead-tellurium oxysalts from Otto Mountain near Baker, California, USA: XII. Andychristyite, PbCu^(2+)Te^(6+)O_5(H_2O), a new mineral with hcp stair-step layers

    Get PDF
    Andychristyite, PbCu^(2+)Te^(6+)O_5(H_2O), is a new tellurate mineral from Otto Mountain near Baker, California, USA. It occurs in vugs in quartz in association with timroseite. It is interpreted as having formed from the partial oxidation of primary sulfides and tellurides during or following brecciation of quartz veins. Andychristyite is triclinic, space group P1, with unit-cell dimensions a = 5.322(3), b = 7.098(4), c = 7.511(4) Å, α = 83.486(7), β = 76.279(5), γ = 70.742(5)°, V = 260.0(2) Å^3 and Z = 2. It forms as small tabular crystals up to ∼50 µm across, in sub-parallel aggregates. The colour is bluish green and the streak is very pale bluish green. Crystals are transparent with adamantine lustre. The Mohs hardness is estimated at between 2 and 3. Andychristyite is brittle with an irregular fracture and one perfect cleavage on {001}. The calculated density based on the empirical formula is 6.304 g/cm^3. The mineral is optically biaxial, with large 2V, strong dispersion, and moderate very pale blue-green to medium blue-green pleochroism. The electron microprobe analyses (average of five) provided: PbO 43.21, CuO 15.38, TeO_3 35.29, H_2O 3.49 (structure), total 97.37 wt.%. The empirical formula (based on 6 O apfu) is: Pb_(0.98)C u^(2+)_(0.98)Te^(6+)_(1.02)O_6H_(1.96). The Raman spectrum exhibits prominent features consistent with the mineral being a tellurate, as well as an OH stretching feature confirming a hydrous component. The eight strongest powder X-ray diffraction lines are [d_(obs) in Å(I)(hkl)]: 6.71(16)(010), 4.76(17)(110), 3.274(100)(120,102,012), 2.641(27)(102, 211, 112), 2.434(23)(multiple), 1.6736(17)(multiple), 1.5882(21)(multiple) and 1.5133(15)(multiple). The crystal structure of andychristyite (R_1 = 0.0165 for 1511 reflections with Fo > 4σF) consists of stair-step-like hcp polyhedral layers of Te^(6+)O_6 and Cu^(2+)O_6 octahedra parallel to {001}, which are linked in the [001] direction by bonds to interlayer Pb atoms. The structures of eckhardite, bairdite, timroseite and paratimroseite also contain stair-step-like hcp polyhedral layers

    Fetal liver blood flow distribution: role in human developmental strategy to prioritize fat deposition versus brain development

    Get PDF
    Among primates, human neonates have the largest brains but also the highest proportion of body fat. If placental nutrient supply is limited, the fetus faces a dilemma: should resources be allocated to brain growth, or to fat deposition for use as a potential postnatal energy reserve? We hypothesised that resolving this dilemma operates at the level of umbilical blood distribution entering the fetal liver. In 381 uncomplicated pregnancies in third trimester, we measured blood flow perfusing the fetal liver, or bypassing it via the ductus venosus to supply the brain and heart using ultrasound techniques. Across the range of fetal growth and independent of the mother's adiposity and parity, greater liver blood flow was associated with greater offspring fat mass measured by dual-energy X-ray absorptiometry, both in the infant at birth (r = 0.43, P<0.001) and at age 4 years (r = 0.16, P = 0.02). In contrast, smaller placentas less able to meet fetal demand for essential nutrients were associated with a brain-sparing flow pattern (r = 0.17, p = 0.02). This flow pattern was also associated with a higher degree of shunting through ductus venosus (P = 0.04). We propose that humans evolved a developmental strategy to prioritize nutrient allocation for prenatal fat deposition when the supply of conditionally essential nutrients requiring hepatic inter-conversion is limited, switching resource allocation to favour the brain if the supply of essential nutrients is limited. Facilitated placental transfer mechanisms for glucose and other nutrients evolved in environments less affluent than those now prevalent in developed populations, and we propose that in circumstances of maternal adiposity and nutrient excess these mechanisms now also lead to prenatal fat deposition. Prenatal developmental influences play important roles in the human propensity to deposit fa
    • …
    corecore