35 research outputs found

    Implications of using whole genome sequencing to test unselected populations for high risk breast cancer genes: a modelling study.

    Get PDF
    BACKGROUND: The decision to test for high risk breast cancer gene mutations is traditionally based on risk scores derived from age, family and personal cancer history. Next generation sequencing technologies such as whole genome sequencing (WGS) make wider population testing more feasible. In the UK's 100,000 Genomes Project, mutations in 16 genes including BRCA1 and BRCA2 are to be actively sought regardless of clinical presentation. The implications of deploying this approach at scale for patients and clinical services are unclear. In this study we aimed to model the effect of using WGS to test an unselected UK population for high risk BRCA1 and BRCA2 gene variants to inform the debate around approaches to secondary genomic findings. METHODS: We modelled the test performance of WGS for identifying pathogenic BRCA1 and BRCA2 mutations in an unselected hypothetical population of 100,000 UK women, using published literature to derive model input parameters. We calculated analytic and clinical validity, described potential health outcomes and highlighted current areas of uncertainty. We also performed a sensitivity analysis in which we re-ran the model 100,000 times to investigate the effect of varying input parameters. RESULTS: In our models WGS was predicted to identify correctly 93 pathogenic BRCA1 mutations and 151 BRCA2 mutations in 120 and 200 women respectively, resulting in an analytic sensitivity of 75.5-77.5 %. Of 244 women with identified pathogenic mutations, we estimated that 132 (range 121-198) would develop breast cancer, so could potentially be helped by intervention. We also predicted that breast cancer would occur in 41 women (range 36-62) incorrectly identified with no pathogenic mutations and in 12,460 women without BRCA1 or BRCA2 mutations. There was considerable uncertainty about the penetrance of mutations in people without a family history of disease and the appropriate threshold of absolute disease risk for clinical action, which impacts on judgements about the clinical utility of intervention. CONCLUSIONS: This simple model demonstrates the need for robust processes to support the testing for secondary genomic findings in unselected populations that acknowledge levels of uncertainty about the clinical validity and clinical utility of testing positive for a cancer risk gene

    The Effect of Two Years of Secukinumab Treatment on Bone Metabolism in Patients with Radiographic Axial Spondyloarthritis:Results from Daily Clinical Practice

    Get PDF
    Background: Our objective was to explore bone-related outcome and bone turnover markers (BTM) during 2 years of secukinumab treatment in patients with radiographic axial spondyloarthritis (r-axSpA) in daily clinical practice. Methods: Included were consecutive r-axSpA outpatients from the Groningen Leeuwarden axSpA (GLAS) cohort treated with secukinumab for 2 years. At baseline and 2 years, spinal radiographic damage was assessed using the modified Stoke Ankylosing Spondylitis Spinal Score (mSASSS; 0–72), cervical facet joint involvement according the “de Vlam” scoring method (0–15) and radiographic vertebral fractures (VF) using the “Genant” method (grade 0–3). At all visits, BTM reflecting collagen resorption (serum type I collagen C-telopeptide; sCTX), collagen formation (procollagen type 1 N-terminal peptide; PINP) and bone mineralization (bone-specific alkaline phosphatase; BALP) were measured and expressed in Z-scores to correct for the normal influence of age and gender.Results: 17 r-axSpA patients were included; 53% male, mean age was 47±15 years, mean Ankylosing Spondylitis Disease Activity Score (ASDAS) 3.9±1.2, and 53% was biological naïve. The median 2-year progression rates were 1.1 for mSASSS and 0.5 for facet joints, which was less than the smallest detectable change. One traumatic VF (grade 3) occurred. Serum levels of sCTX and PINP remained stable during secukinumab treatment and BALP decreased significantly after 2 years, with median 0–2 year change in Z-scores of +0.1, −0.4, and −1.2, respectively.Conclusion: This explorative study of r-axSpA patients treated with secukinumab in daily clinical practice showed low radiographic spinal progression during 2 years of follow-up. Collagen resorption and formation markers remained stable, whereas mineralization marker BALP decreased significantly after 2 years. Our results are in line with the results of in vitro studies demonstrating that inhibition of IL17-A resulted in suppression of osteogenic differentiation with significant decrease in mineralization.</p

    Lymphoma-associated mutations in autoreactive memory B cells of patients with Sjögren's syndrome

    Get PDF
    We recently demonstrated that normal memory B lymphocytes carry a substantial number of de novo mutations in the genome. Here, we performed exome-wide somatic mutation analyses of bona fide autoreactive rheumatoid factor (RF)-expressing memory B cells retrieved from patients with Sjӧgren's syndrome (SS). The amount and repertoire of the de novo exome mutations of RF B cells were found to be essentially different from those detected in healthy donor memory B cells. In contrast to the mutation spectra of normal B cells, which appeared random and non-selected, the mutations of the RF B cells were greater in number and enriched for mutations in genes also found mutated in B-cell non-Hodgkin lymphomas. During the study, one of the SS patients developed a diffuse large B-cell lymphoma (DLBCL) out of an RF clone that was identified 2 years earlier in an inflamed salivary gland biopsy. The successive oncogenic events in the RF precursor clone and the DLBCL were assessed. In conclusion, our findings of enhanced and selected genomic damage in growth-regulating genes in RF memory B cells of SS patients together with the documented transformation of an RF-precursor clone into DLBCL provide unique novel insight into the earliest stages of B-cell derailment and lymphomagenesis.</p

    Points to consider for prioritizing clinical genetic testing services: a European consensus process oriented at accountability for reasonableness.

    Get PDF
    Given the cost constraints of the European health-care systems, criteria are needed to decide which genetic services to fund from the public budgets, if not all can be covered. To ensure that high-priority services are available equitably within and across the European countries, a shared set of prioritization criteria would be desirable. A decision process following the accountability for reasonableness framework was undertaken, including a multidisciplinary EuroGentest/PPPC-ESHG workshop to develop shared prioritization criteria. Resources are currently too limited to fund all the beneficial genetic testing services available in the next decade. Ethically and economically reflected prioritization criteria are needed. Prioritization should be based on considerations of medical benefit, health need and costs. Medical benefit includes evidence of benefit in terms of clinical benefit, benefit of information for important life decisions, benefit for other people apart from the person tested and the patient-specific likelihood of being affected by the condition tested for. It may be subject to a finite time window. Health need includes the severity of the condition tested for and its progression at the time of testing. Further discussion and better evidence is needed before clearly defined recommendations can be made or a prioritization algorithm proposed. To our knowledge, this is the first time a clinical society has initiated a decision process about health-care prioritization on a European level, following the principles of accountability for reasonableness. We provide points to consider to stimulate this debate across the EU and to serve as a reference for improving patient management

    Optimising Exome Prenatal Sequencing Services (EXPRESS): a study protocol to evaluate rapid prenatal exome sequencing in the NHS Genomic Medicine Service [version 2; peer review: 2 approved]

    Get PDF
    Background: Prenatal exome sequencing (ES) for the diagnosis of fetal anomalies was implemented nationally in England in October 2020 by the NHS Genomic Medicine Service (GMS). The GMS is based around seven regional Genomic Laboratory Hubs (GLHs). Prenatal ES has the potential to significantly improve NHS prenatal diagnostic services by increasing genetic diagnoses and informing prenatal decision-making. Prenatal ES has not previously been offered routinely in a national healthcare system and there are gaps in knowledge and guidance. Methods: Our mixed-methods evaluation commenced in October 2020, aligning with the start date of the NHS prenatal ES service. Study design draws on a framework developed in previous studies of major system innovation. There are five interrelated workstreams. Workstream-1 will use interviews and surveys with professionals, non-participant observations and documentary analysis to produce in-depth case studies across all GLHs. Data collection at multiple time points will track changes over time. In Workstream-2 qualitative interviews with parents offered prenatal ES will explore experiences and establish information and support needs. Workstream-3 will analyse data from all prenatal ES tests for nine-months to establish service outcomes (e.g. diagnostic yield, referral rates, referral sources). Comparisons between GLHs will identify factors (individual or service-related) associated with any variation in outcomes. Workstream-4 will identify and analyse practical ethical problems. Requirements for an effective ethics framework for an optimal and equitable service will be determined. Workstream-5 will assess costs and cost-effectiveness of prenatal ES versus standard tests and evaluate costs of implementing an optimal prenatal ES care pathway. Integration of findings will determine key features of an optimal care pathway from a service delivery, parent and professional perspective. Discussion: The proposed formative and summative evaluation will inform the evolving prenatal ES service to ensure equity of access, high standards of care and benefits for parents across England

    Visualisation and characterisation of mononuclear phagocytes in the chicken respiratory tract using CSF1R-transgenic chickens

    Get PDF
    Additional file 2. Location of B cells, T cells and follicular dendritic cells (FDC) in the lung of MacReporter chickens. The BALT region of 5 to 7 week old non-vaccination animals were analysed for B, T and FCD cells. Isotype controls were used to standardise the microscope and examine aspecific binding before acquiring images (A-B). The GC of MacReporter animals are tightly packed with Bu1-CSF1R-eGFP+ FDC cells and Bu1+CSF1R-eGFP- B cells (C) with few Bu1+ B cells found in the parabronchi (F). CD3+ T cells are disperse within and outside the GC (D) and parabronchi (G). CSF1R-eGFP+ FDC cells express Fc receptors and trap immunoglobulin by expressing IgY (E) and CSF1R-eGFP+ IgY+ FDC are rarely detected out with the GC, BALT region of the lung. GC are indicated by white dashed lines

    HER2 status in breast cancer—an example of pharmacogenetic testing

    No full text
    The development of new drugs and associated pharmacogenetic tests will provide an increasing number of challenges to health care systems. In particular, how to evaluate their benefits, prioritize for commissioning purposes and implement a service to provide them in a timely manner. This paper presents an overview of HER2 testing for trastuzumab (Herceptin) treatment in breast cancer cases. Immunohistochemistry and fluorescence in situ hybridization laboratory techniques are described and their HER2 testing performances are compared. Future options for the national provision of HER2 testing by the National Health Service in the UK are also discussed
    corecore