89 research outputs found

    Stationary phase expression of the arginine biosynthetic operon argCBH in Escherichia coli

    Get PDF
    BACKGROUND: Arginine biosynthesis in Escherichia coli is elevated in response to nutrient limitation, stress or arginine restriction. Though control of the pathway in response to arginine limitation is largely modulated by the ArgR repressor, other factors may be involved in increased stationary phase and stress expression. RESULTS: In this study, we report that expression of the argCBH operon is induced in stationary phase cultures and is reduced in strains possessing a mutation in rpoS, which encodes an alternative sigma factor. Using strains carrying defined argR, and rpoS mutations, we evaluated the relative contributions of these two regulators to the expression of argH using operon-lacZ fusions. While ArgR was the main factor responsible for modulating expression of argCBH, RpoS was also required for full expression of this biosynthetic operon at low arginine concentrations (below 60 μM L-arginine), a level at which growth of an arginine auxotroph was limited by arginine. When the argCBH operon was fully de-repressed (arginine limited), levels of expression were only one third of those observed in ΔargR mutants, indicating that the argCBH operon is partially repressed by ArgR even in the absence of arginine. In addition, argCBH expression was 30-fold higher in ΔargR mutants relative to levels found in wild type, fully-repressed strains, and this expression was independent of RpoS. CONCLUSION: The results of this study indicate that both derepression and positive control by RpoS are required for full control of arginine biosynthesis in stationary phase cultures of E. coli

    Stomatin-like Protein 2 Links Mitochondria to T-Cell Receptor Signalosomes at the Immunological Synapse and Enhances T-Cell Activation

    Get PDF
    T cell activation through the antigen receptor (TCR) requires sustained signalling from microclusters in the peripheral region of the immunological synapse (IS). The bioenergetics of such prolonged signaling have been linked to the redistribution of mitochondria to the IS. Here, we report that stomatin-like protein-2 (SLP-2) plays an important role in this process by bridging polarized mitochondria to these signaling TCR microclusters or signalosomes in the IS in a polymerized actin-dependent manner. In this way, SLP-2 helps to sustain TCR-dependent signalling and enhances T cell activation

    Mitochondrial and Plasma Membrane Pools of Stomatin-Like Protein 2 Coalesce at the Immunological Synapse during T Cell Activation

    Get PDF
    Stomatin-like protein 2 (SLP-2) is a member of the stomatin – prohibitin – flotillin – HflC/K (SPFH) superfamily. Recent evidence indicates that SLP-2 is involved in the organization of cardiolipin-enriched microdomains in mitochondrial membranes and the regulation of mitochondrial biogenesis and function. In T cells, this role translates into enhanced T cell activation. Although the major pool of SLP-2 is associated with mitochondria, we show here that there is an additional pool of SLP-2 associated with the plasma membrane of T cells. Both plasma membrane-associated and mitochondria-associated pools of SLP-2 coalesce at the immunological synapse (IS) upon T cell activation. SLP-2 is not required for formation of IS nor for the re-localization of mitochondria to the IS because SLP-2-deficient T cells showed normal re-localization of these organelles in response to T cell activation. Interestingly, upon T cell activation, we found the surface pool of SLP-2 mostly excluded from the central supramolecular activation complex, and enriched in the peripheral area of the IS where signalling TCR microclusters are located. Based on these results, we propose that SLP-2 facilitates the compartmentalization not only of mitochondrial membranes but also of the plasma membrane into functional microdomains. In this latter location, SLP-2 may facilitate the optimal assembly of TCR signalosome components. Our data also suggest that there may be a net exchange of membrane material between mitochondria and plasma membrane, explaining the presence of some mitochondrial proteins in the plasma membrane

    2015 ESC Guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death the Task Force for the Management of Patients with Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death of the European Society of Cardiology (ESC) Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC)

    Get PDF
    N/

    Multi-ethnic genome-wide association study for atrial fibrillation

    Get PDF
    Atrial fibrillation (AF) affects more than 33 million individuals worldwide and has a complex heritability. We conducted the largest meta-analysis of genome-wide association studies (GWAS) for AF to date, consisting of more than half a million individuals, including 65,446 with AF. In total, we identified 97 loci significantly associated with AF, including 67 that were novel in a combined-ancestry analysis, and 3 that were novel in a European-specific analysis. We sought to identify AF-associated genes at the GWAS loci by performing RNA-sequencing and expression quantitative trait locus analyses in 101 left atrial samples, the most relevant tissue for AF. We also performed transcriptome-wide analyses that identified 57 AF-associated genes, 42 of which overlap with GWAS loci. The identified loci implicate genes enriched within cardiac developmental, electrophysiological, contractile and structural pathways. These results extend our understanding of the biological pathways underlying AF and may facilitate the development of therapeutics for AF

    Protocol for the perfusion and angiography imaging sub-study of the Third International Stroke Trial (IST-3) of alteplase treatment within six-hours of acute ischemic stroke

    Get PDF
    RATIONALE: Intravenous thrombolysis with recombinant tissue Plasminogen Activator improves outcomes in patients treated early after stroke but at the risk of causing intracranial hemorrhage. Restricting recombinant tissue Plasminogen Activator use to patients with evidence of still salvageable tissue, or with definite arterial occlusion, might help reduce risk, increase benefit and identify patients for treatment at late time windows. AIMS: To determine if perfusion or angiographic imaging with computed tomography or magnetic resonance help identify patients who are more likely to benefit from recombinant tissue Plasminogen Activator in the context of a large multicenter randomized trial of recombinant tissue Plasminogen Activator given within six-hours of onset of acute ischemic stroke, the Third International Stroke Trial. DESIGN: Third International Stroke Trial is a prospective multicenter randomized controlled trial testing recombinant tissue Plasminogen Activator (0·9 mg/kg, maximum dose 90 mg) started up to six-hours after onset of acute ischemic stroke, in patients with no clear indication for or contraindication to recombinant tissue Plasminogen Activator. Brain imaging (computed tomography or magnetic resonance) was mandatory pre-randomization to exclude hemorrhage. Scans were read centrally, blinded to treatment and clinical information. In centers where perfusion and/or angiography imaging were used routinely in stroke, these images were also collected centrally, processed and assessed using validated visual scores and computational measures. STUDY OUTCOMES: The primary outcome in Third International Stroke Trial is alive and independent (Oxford Handicap Score 0-2) at 6 months; secondary outcomes are symptomatic and fatal intracranial hemorrhage, early and late death. The perfusion and angiography study additionally will examine interactions between recombinant tissue Plasminogen Activator and clinical outcomes, infarct growth and recanalization in the presence or absence of perfusion lesions and/or arterial occlusion at presentation. The study is registered ISRCTN25765518

    Recalcitrant lymphocytoma cutis successfully treated with mycophenolate mofetil

    No full text
    Lymphocytoma cutis reflects an exaggerated local immunologic reaction to a stimulus presenting on the head, neck, or upper extremities as a firm 1–3 cm erythematous and/or violaceous plaque or nodule. However, lymphocytoma cutis may be difficult to treat due to the variety of causative agents and the lack of reported successful treatments and outcomes. Here, we present a case of 68-year-old female with recalcitrant lymphocytoma cutis resistant to other first-line therapies including tacrolimus ointment and steroids. The red plaque on the patient’s left cheek was eventually treated with mycophenolate mofetil. Mycophenolate mofetil was an accessible and effective therapeutic option to treat lymphocytoma cutis with minimal side effects

    A Molecular Perspective of CTLA-4 Function

    No full text
    Within the paradigm of the two-signal model of lymphocyte activation, the interest in costimulation has witnessed a remarkable emergence in the past few years with the discovery of a large array of molecules that can serve this role, including some with an inhibitory function. Interest has been further enhanced by the realization of these molecules\u27 potential as targets to modulate clinical immune responses. Although the therapeutic translation of mechanistic knowledge in costimulatory molecules has been relatively straightforward, the capacity to target their inhibitory counterparts has remained limited. This limited capacity is particularly apparent in the case of the cytotoxic T lymphocyte-associated antigen-4 (CTLA-4), a major negative regulator of T cell responses. Because there have been several previous comprehensive reviews on the function of this molecule, we focus here on the physiological implications of its structural features. Such an exercise may ultimately help us to design immunotherapeutic agents that target CTLA-4
    • …
    corecore