12 research outputs found

    The Applicability of Time-Integrated Unit Stream Power for Estimating Bridge Pier Scour Using Noncontact Methods in a Gravel-Bed River

    No full text
    In near-field remote sensing, noncontact methods (radars) that measure stage and surface water velocity have the potential to supplement traditional bridge scour monitoring tools because they are safer to access and are less likely to be damaged compared with in-stream sensors. The objective of this study was to evaluate the use of radars for monitoring the hydraulic conditions that contribute to bridge–pier scour in gravel-bed channels. Measurements collected with a radar were also leveraged along with minimal field measurements to evaluate whether time-integrated stream power per unit area (Ω) was correlated with observed scour depth at a scour-critical bridge in Colorado. The results of this study showed that (1) there was close agreement between radar-based and U.S. Geological Survey streamgage-based measurements of stage and discharge, indicating that radars may be viable tools for monitoring flow conditions that lead to bridge pier scour; (2) Ω and pier scour depth were correlated, indicating that radar-derived Ω measurements may be used to estimate scour depth in real time and predict scour depth based on the measured trajectory of Ω. The approach presented in this study is intended to supplement, rather than replace, existing high-fidelity scour monitoring techniques and provide data quickly in information-poor areas

    The Applicability of Time-Integrated Unit Stream Power for Estimating Bridge Pier Scour Using Noncontact Methods in a Gravel-Bed River

    No full text
    In near-field remote sensing, noncontact methods (radars) that measure stage and surface water velocity have the potential to supplement traditional bridge scour monitoring tools because they are safer to access and are less likely to be damaged compared with in-stream sensors. The objective of this study was to evaluate the use of radars for monitoring the hydraulic conditions that contribute to bridge–pier scour in gravel-bed channels. Measurements collected with a radar were also leveraged along with minimal field measurements to evaluate whether time-integrated stream power per unit area (Ω) was correlated with observed scour depth at a scour-critical bridge in Colorado. The results of this study showed that (1) there was close agreement between radar-based and U.S. Geological Survey streamgage-based measurements of stage and discharge, indicating that radars may be viable tools for monitoring flow conditions that lead to bridge pier scour; (2) Ω and pier scour depth were correlated, indicating that radar-derived Ω measurements may be used to estimate scour depth in real time and predict scour depth based on the measured trajectory of Ω. The approach presented in this study is intended to supplement, rather than replace, existing high-fidelity scour monitoring techniques and provide data quickly in information-poor areas

    Near-Field Remote Sensing of Surface Velocity and River Discharge Using Radars and the Probability Concept at 10 U.S. Geological Survey Streamgages

    No full text
    Near-field remote sensing of surface velocity and river discharge (discharge) were measured using coherent, continuous wave Doppler and pulsed radars. Traditional streamgaging requires sensors be deployed in the water column; however, near-field remote sensing has the potential to transform streamgaging operations through non-contact methods in the U.S. Geological Survey (USGS) and other agencies around the world. To differentiate from satellite or high-altitude platforms, near-field remote sensing is conducted from fixed platforms such as bridges and cable stays. Radar gages were collocated with 10 USGS streamgages in river reaches of varying hydrologic and hydraulic characteristics, where basin size ranged from 381 to 66,200 square kilometers. Radar-derived mean-channel (mean) velocity and discharge were computed using the probability concept and were compared to conventional instantaneous measurements and time series. To test the efficacy of near-field methods, radars were deployed for extended periods of time to capture a range of hydraulic conditions and environmental factors. During the operational phase, continuous time series of surface velocity, radar-derived discharge, and stage-discharge were recorded, computed, and transmitted contemporaneously and continuously in real time every 5 to 15 min. Minimum and maximum surface velocities ranged from 0.30 to 3.84 m per second (m/s); minimum and maximum radar-derived discharges ranged from 0.17 to 4890 cubic meters per second (m3/s); and minimum and maximum stage-discharge ranged from 0.12 to 4950 m3/s. Comparisons between radar and stage-discharge time series were evaluated using goodness-of-fit statistics, which provided a measure of the utility of the probability concept to compute discharge from a singular surface velocity and cross-sectional area relative to conventional methods. Mean velocity and discharge data indicate that velocity radars are highly correlated with conventional methods and are a viable near-field remote sensing technology that can be operationalized to deliver real-time surface velocity, mean velocity, and discharge

    Artificial Intelligence: Is Watson the Real Thing?

    No full text

    Stärke, Dextrine, Kohlenhydrate der Inulingruppe, Cellulosen usw

    No full text
    corecore