12 research outputs found

    Influence of energy balance on the antimicrobial peptides S100A8 and S100A9 in the endometrium of the postpartum dairy cow

    Get PDF
    Uterine inflammation occurs after calving in association with extensive endometrial remodelling and bacterial contamination. If the inflammation persists, it leads to reduced fertility. Chronic endometritis is highly prevalent in high-yielding cows that experience negative energy balance (NEB) in early lactation. This study investigated the effect of NEB on the antimicrobial peptides S100A8 and S100A9 in involuting uteri collected 2 weeks post partum. Holstein-Friesian cows (six per treatment) were randomly allocated to two interventions designed to produce mild or severe NEB (MNEB and SNEB) status. Endometrial samples were examined histologically, and the presence of neutrophils, macrophages, lymphocytes and natural killer cells was confirmed using haematoxylin and eosin and immunostaining. SNEB cows had greater signs of uterine inflammation. Samples of previously gravid uterine horn were used to localise S100A8 and S100A9 by immunohistochemistry. Both S100 proteins were present in bovine endometrium with strong staining in epithelial and stromal cells and in infiltrated leucocytes. Immunostaining was significantly higher in SNEB cows along with increased numbers of segmented neutrophils. These results suggest that the metabolic changes of a post-partum cow suffering from NEB delay uterine involution and promote a chronic state of inflammation. We show that upregulation of S100A8 and S100A9 is clearly a key component of the early endometrial response to uterine infection. Further studies are warranted to link the extent of this response after calving to the likelihood of cows developing endometritis and to their subsequent fertility

    Systematic review: conservative treatments for secondary lymphedema

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Several conservative (i.e., nonpharmacologic, nonsurgical) treatments exist for secondary lymphedema. The optimal treatment is unknown. We examined the effectiveness of conservative treatments for secondary lymphedema, as well as harms related to these treatments.</p> <p>Methods</p> <p>We searched MEDLINE<sup>®</sup>, EMBASE<sup>®</sup>, Cochrane Central Register of Controlled Trials<sup>®</sup>, AMED, and CINAHL from 1990 to January 19, 2010. We obtained English- and non-English-language randomized controlled trials or observational studies (with comparison groups) that reported primary effectiveness data on conservative treatments for secondary lymphedema. For English-language studies, we extracted data in tabular form and summarized the tables descriptively. For non-English-language studies, we summarized the results descriptively and discussed similarities with the English-language studies.</p> <p>Results</p> <p>Thirty-six English-language and eight non-English-language studies were included in the review. Most of these studies involved upper-limb lymphedema secondary to breast cancer. Despite lymphedema's chronicity, lengths of follow-up in most studies were under 6 months. Many trial reports contained inadequate descriptions of randomization, blinding, and methods to assess harms. Most observational studies did not control for confounding. Many studies showed that active treatments reduced the size of lymphatic limbs, although extensive between-study heterogeneity in areas such as treatment comparisons and protocols, and outcome measures, prevented us from assessing whether any one treatment was superior. This heterogeneity also precluded us from statistically pooling results. Harms were rare (< 1% incidence) and mostly minor (e.g., headache, arm pain).</p> <p>Conclusions</p> <p>The literature contains no evidence to suggest the most effective treatment for secondary lymphedema. Harms are few and unlikely to cause major clinical problems.</p

    Photorejuvenation

    No full text
    corecore