6,866 research outputs found

    Cleaning and Cleanliness Measurement of Additive Manufactured Parts

    Get PDF
    The successful acquisition and utilization of piece parts and assemblies for contamination sensitive applications requires application of cleanliness acceptance criteria. Contamination can be classified using many different schemes. One common scheme is classification as organic, ionic and particulate contaminants. These may be present in and on the surface of solid components and assemblies or may be dispersed in various gaseous or liquid media. This discussion will focus on insoluble particle contamination on the surfaces of piece parts and assemblies. Cleanliness of parts can be controlled using two strategies, referred to as gross cleanliness and precision cleanliness. Under a gross cleanliness strategy acceptance is based on visual cleanliness. This approach introduces a number of concerns that render it unsuitable for controlling cleanliness of high technology products. Under the precision cleanliness strategy, subjective, visual assessment of cleanliness is replaced by objective measurement of cleanliness. When a precision cleanliness strategy is adopted there naturally arises the question: How clean is clean enough? The methods for establishing objective cleanliness acceptance limits will be discussed

    Replacement of Hydrochlorofluorocarbon (HCFC) -225 Solvent for Cleaning and Verification Sampling of NASA Propulsion Oxygen Systems Hardware, Ground Support Equipment, and Associated Test Systems

    Get PDF
    Since the 1990's, when the Class I Ozone Depleting Substance (ODS) chlorofluorocarbon-113 (CFC-113) was banned, NASA's rocket propulsion test facilities at Marshall Space Flight Center (MSFC) and Stennis Space Center (SSC) have relied upon hydrochlorofluorocarbon-225 (HCFC-225) to safely clean and verify the cleanliness of large scale propulsion oxygen systems. Effective January 1, 2015, the production, import, export, and new use of HCFC-225, a Class II ODS, was prohibited by the Clean Air Act. In 2012 through 2014, leveraging resources from both the NASA Rocket Propulsion Test Program and the Defense Logistics Agency - Aviation Hazardous Minimization and Green Products Branch, test labs at MSFC, SSC, and Johnson Space Center's White Sands Test Facility (WSTF) collaborated to seek out, test, and qualify a replacement for HCFC-225 that is both an effective cleaner and safe for use with oxygen systems. Candidate solvents were selected and a test plan was developed following the guidelines of ASTM G127, Standard Guide for the Selection of Cleaning Agents for Oxygen Systems. Solvents were evaluated for materials compatibility, oxygen compatibility, cleaning effectiveness, and suitability for use in cleanliness verification and field cleaning operations. Two solvents were determined to be acceptable for cleaning oxygen systems and one was chosen for implementation at NASA's rocket propulsion test facilities. The test program and results are summarized. This project also demonstrated the benefits of cross-agency collaboration in a time of limited resources

    Results of the Test Program for Replacement of AK-225G Solvent for Cleaning NASA Propulsion Oxygen Systems

    Get PDF
    Since the 1990's, when the Class I Ozone Depleting Substance chlorofluorocarbon-113 was banned, NASA's propulsion test facilities at Marshall Space Flight Center and Stennis Space Center have relied upon the solvent Asahiklin AK-225 (hydrochlorofluorocarbon-225ca/cb or HCFC-225ca/cb) and, more recently AK-225G (the single isomer form, HCFC-225cb) to safely clean and verify the cleanliness of large scale propulsion oxygen systems. Effective January 1, 2015, the production, import, export, and new use of Class II Ozone Depleting Substances, including AK-225G, was prohibited in the United States by the Clean Air Act. In 2012 through 2014, NASA test labs at MSFC, SSC, and Johnson Space Center's White Sands Test Facility collaborated to seek out, test, and qualify a solvent replacement for AK-225G that is both an effective cleaner and safe for use with oxygen systems. This paper summarizes the tests performed, results, and lessons learned

    From Old Spice to the Texas Law Hawk: How Inbound Marketing, Content Leadership and Social Media Can Level the Playing Field for Solo Practitioners

    Get PDF
    The advent of technological tools such as social media present the legal industry with the potential for both perilous liability and unparalleled rainmaking. However, the full potential of social media remains untapped in the legal field because the topic has yet to be fully integrated into a broader understanding of inbound marketing and content leadership. The current treatment of social media in the legal literature is uneven-it tends to disproportionately emphasize the potential liabilities over the benefits, and it fails to provide a thorough framework to guide its optimal use. This article aims to rectify this uneven treatment by situating social media as but a single element within an inbound marketing scheme driven by content leadership. More precisely, this article presents a hub-and-spoke model of inbound marketing in which attorneys establish themselves as content leaders (the content hub) and then create and cultivate client relationships through the spokes of social media, blogging, and search engine optimization (SEO). To support this model, this article provides a brief history of marketing along with an introduction to foundational marketing theory augmented by recent technology. Those principles are then applied to law firms through the examination of case studies in both traditional businesses and law firms. Finally, this article concludes by arguing that utilizing this model provides solo practitioners with the ability to establish a more pronounced voice for themselves, which, in effect, puts them on equal footing with larger more established firms

    Spatial-stochastic modelling of synthetic gene regulatory networks

    Get PDF
    Funding: EPSRC Grant No. EP/N014642/1 (EPSRC Centre for Multiscale Soft Tissue Mechanics - With Application to Heart & Cancer) (MAJC,CKM).Transcription factors are important molecules which control the levels of mRNA and proteins within cells by modulating the process of transcription (the mechanism by which mRNA is produced within cells) and hence translation (the mechanism by which proteins are produced within cells). Transcription factors are part of a wider family of molecular interaction networks known as gene regulatory networks (GRNs) which play an important role in key cellular processes such as cell division and apoptosis (e.g. the p53-Mdm2, NFκB pathways). Transcription factors exert control over molecular levels through feedback mechanisms, with proteins binding to gene sites in the nucleus and either up-regulating or down-regulating production of mRNA. In many GRNs, there is a negative feedback in the network and the transcription rate is reduced. Typically, this leads to the mRNA and protein levels oscillating over time and also spatially between the nucleus and cytoplasm. When experimental data for such systems is analysed, it is observed to be noisy and in many cases the actual numbers of molecules involved are quite low. In order to model such systems accurately and connect with the data in a quantitative way, it is therefore necessary to adopt a stochastic approach as well as take into account the spatial aspect of the problem. In this paper, we extend previous work in the area by formulating and analysing stochastic spatio-temporal models of synthetic GRNs e.g. repressilators and activator-repressor systems.PostprintPeer reviewe

    Susceptibility of Human Prion Protein to Conversion by Chronic Wasting Disease Prions

    Get PDF
    Chronic wasting disease (CWD) is a contagious and fatal neurodegenerative disease and a serious animal health issue for deer and elk in North America. The identification of the first cases of CWD among free-ranging reindeer and moose in Europe brings back into focus the unresolved issue of whether CWD can be zoonotic like bovine spongiform encephalopathy. We used a cell-free seeded protein misfolding assay to determine whether CWD prions from elk, white-tailed deer, and reindeer in North America can convert the human prion protein to the disease-associated form. We found that prions can convert, but the efficiency of conversion is affected by polymorphic variation in the cervid and human prion protein genes. In view of the similarity of reindeer, elk, and white-tailed deer in North America to reindeer, red deer, and roe deer, respectively, in Europe, a more comprehensive and thorough assessment of the zoonotic potential of CWD might be warranted
    • …
    corecore