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Abstract

Transcription factors are important molecules which control the levels of

mRNA and proteins within cells by modulating the process of transcrip-

tion (the mechanism by which mRNA is produced within cells) and hence

translation (the mechanism by which proteins are produced within cells).

Transcription factors are part of a wider family of molecular interaction net-

works known as gene regulatory networks (GRNs) which play an important

role in key cellular processes such as cell division and apoptosis (e.g. the

p53-Mdm2, NFκB pathways). Transcription factors exert control over mo-

lecular levels through feedback mechanisms, with proteins binding to gene

sites in the nucleus and either up-regulating or down-regulating production of

mRNA. In many GRNs, there is a negative feedback in the network and the

transcription rate is reduced. Typically, this leads to the mRNA and protein
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levels oscillating over time and also spatially between the nucleus and cyto-

plasm. When experimental data for such systems is analysed, it is observed

to be noisy and in many cases the actual numbers of molecules involved are

quite low. In order to model such systems accurately and connect with the

data in a quantitative way, it is therefore necessary to adopt a stochastic

approach as well as take into account the spatial aspect of the problem. In

this paper, we extend previous work in the area by formulating and analysing

stochastic spatio-temporal models of synthetic GRNs e.g. repressilators and

activator-repressor systems.

Keywords: synthetic gene regulatory networks, repressilators,

activator-repressor systems, spatial-stochastic modelling

1. Introduction1

Cellular processes (e.g. cell division, apoptosis and adhesion) are governed2

by a cell’s DNA through interactions of RNA and protein. Any subset of3

these products and their interactions can be thought of as a network and4

are customarily called gene regulatory networks (GRNs). A specific group5

of proteins, called transcription factors, are a common feature of GRNs: in6

response to signals or stimuli they alter the transcription rate of genes in7

order to affect protein levels. Such GRNs typically employ feedback mech-8

anisms; for example, when a protein represses the transcription rate of its9

own mRNA there is said to be negative feedback. Negative feedback loops10

typically lead to fluctuating levels of protein and are implemented in many11

different biological processes (e.g. inflammation, meiosis, apoptosis and the12

heat shock response, Lahav et al., 2004). Within the emerging field of13
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synthetic biology, GRNs are of particular interest and following the ground-14

breaking work of Becskei and Serrano (2000) and Elowitz and Leibler (2000),15

they have been investigated both from a practical, experimental (Balagadde16

et al., 2008; Chen et al., 2012; Yordanov et al., 2014) and a theoretical mod-17

elling viewpoint (Purcell et al., 2010; O’Brien et al., 2012).18

Interest in the mathematical modelling of GRNs first began in the 1960s19

(Goodwin, 1965; Griffith, 1968). In these papers ODE models of a simple20

mRNA-protein feedback system were given and analysed for oscillatory be-21

haviour. In such “closed-loop” negative feedback systems the protein inhibits22

the production of its own mRNA; intuitively one would expect this to lead to23

fluctuating levels of both molecules, however, periodic behaviour could not24

be derived. More recently authors have introduced delay mechanisms into25

differential equations in order to achieve periodic fluctuations in the mRNA26

and protein concentrations. These models considered either generic or “syn-27

thetic” GRN systems (Mackey and Glass, 1977; Smolen et al., 1999, 2001,28

2002; Purcell et al., 2010; O’Brien et al., 2012) or models of actual biolo-29

gical pathways e.g. the Hes1 system, the p53-Mdm2 system and the NF-κB30

system (Tiana et al., 2002; Jensen et al., 2003; Lewis, 2003; Monk, 2003;31

Bernard et al., 2006).32

The first spatial models of generic intracellular systems were developed33

in the 1970s and 1980s (Glass and Kauffman, 1970; Shymko and Glass, 1974;34

Busenberg and Mahaffy, 1985; Mahaffy, 1988; Mahaffy and Pao, 1984). One-35

dimensional reaction-diffusion PDEs were designed and examined through36

steady states and stability analysis. The geometry of the system was shown37

to be important and the term “spatial switching” was introduced to refer38
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to the fact that the system geometry can lead to different dynamical be-39

haviour. Such an approach has more recently been adopted and extended40

by Naqib et al. (2012). Certain models have incorporated spatial aspects41

by introducing compartments to account for the fact that different cellular42

processes occur in different locations within a cell, for example mRNA is pro-43

duced in the nucleus and then translates into protein in the cytoplasm (e.g.44

Momiji and Monk, 2008; Cangiani and Natalini, 2010; Sturrock et al., 2011,45

2012). More recent explicit spatial models include those of Dimitrio et al.46

(2013); Eliaš and Clairambault (2014); Eliaš et al. (2014a,b); Szymańska47

et al. (2014). Spatial modelling has provided insight into the importance of48

spatial aspects in deriving periodically fluctuating mRNA and protein beha-49

viour, and recently Chaplain et al. (2015) proved rigorously that molecular50

diffusion causes oscillations in the Hes1 system.51

In order that such continuum approaches be valid, however, it is assumed52

that the molecular numbers of each species are high enough such that they53

could be reduced to concentrations. In reality regulator numbers of both54

mRNA and transcription factors are low, and as such a deterministic differ-55

ential equation approach (ODE or PDE) is not the most appropriate in order56

to capture the effects of stochasticity in a single cell. In this paper, then, we57

consider the more biologically relevant discrete, spatial-stochastic approach58

derived from the spatial-stochastic model of the Hes1 GRN put forward by59

Sturrock et al. (2013). PDE models for repressilators and activator-inhibitors60

showed that oscillations may be achieved provided the relationship between61

the spatial location of the gene site and diffusion coefficient is optimised62

(Macnamara and Chaplain, 2016). We will investigate similar themes here,63
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discussing how spatio-temporal dynamics change as we vary the location of64

the gene site(s) and the diffusion coefficient of the mRNA and protein spe-65

cies. Note the term repressilator (introduced by Elowitz and Leibler, 2000)66

has historically been reserved for a system of three genes which couple to67

form a cycle of negative feedback, however, for ease of reference we choose68

to use this terminology, for any n-gene system for which the protein of any69

given gene inhibits the production of the mRNA for the subsequent gene. Ac-70

cording to our terminology activator-repressor systems couple positive and71

negative feedback.72

The paper is structured as follows. In Section 2 we layout the specific73

model(s) to be investigated and give details of how simulations are carried74

out. In Section 3 we provide results for repressilator systems; first revisiting75

the Hes1 system, or one-gene repressilator, (as detailed by Sturrock et al.,76

2013) to discuss how changes to spatial aspects affect the molecular dynamics77

and then extending the approach to a two-gene repressilator system. In78

Section 4 we present simulation results for a two-gene activator-repressor79

system which contains both positive and negative feedback. Discussions,80

conclusions and directions for future work in this area are given in Section 5.81

2. Model82

Throughout this paper we investigate synthetic gene regulatory network sys-83

tems using stochastic reaction-diffusion models. These models are based on84

one given for the Hes1 system by Sturrock et al. (2013). Details of this85

type of modelling have been given both by Sturrock et al. (2013) and in86

Szymanska et al. (2018), for example, but we formulate the general model87
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(a) (b)

Figure 1: (a) computational 3D cellular domain with imposed tetrahedral

mesh, (b) a cross-section of the geometry. The cell has radius 7.5µm com-

prised of a central nucleus (blue) of radius 3µm and cytoplasm (green). This

domain will be used in the spatial-stochastic simulations with a gene site(s)

defined somewhere within the nucleus, for example, at the point indicated in

red.

fully here for ease of reference for the reader. The biochemical reaction and88

diffusion processess occur within a 3D spherical domain, as depicted in Fig-89

ure 1(a). We approximate the cell as two concentric spheres centred on the90

origin corresponding to the nucleus (blue in Figure 1) and cytoplasm (green91

in Figure 1) with radii 7.5µm and 3µm, respectively. The computational92

domain and imposed tetrahedral mesh is generated using COMSOL; note we93

specify that the maximum mesh element size is 0.8µm. Chemical reactions,94

at the voxel level, or the movement (diffusion jumps) of a molecule, between95

neighbouring voxels, govern the changes to the state of the system between96

6



time steps.97

2.1. Biochemical Reactions98

We consider three distinct types of molecular species: mRNAs, proteins and99

promoters which interact via reactions within each voxel of our domain; dif-100

ferent reactions occur in different voxels depending on where in the domain101

a voxel is located. The reactions for our models are shown in Table 1, for102

i cyclically coupled genes where i = {1, 2, 3, ...n} mod n. If a molecule of103

mRNA of a gene i, mi, enters any voxel in the cytoplasm it may be trans-104

lated producing protein of that same gene, pi, at a rate αp. A promoter for105

each gene i sits within a single voxel located within the nucleus (for a defined106

gene site point - illustrated, for example, by the red point in Figure 1, we107

select the whole voxel which contains it). Transcription of mRNA, mi, oc-108

curs within this ith gene site voxel; the rate of transcription is affected by109

feedback from the protein of the proceeding gene in the cycle, i.e. pi−1. If110

a molecule of protein pi−1 enters the ith gene-site voxel it may bind to the111

(free) promoter, fpi, at a rate k1, occupying the promoter, becoming opi; the112

opposite reaction takes place with the protein uncoupling from the promoter113

at a rate k2. When the promoter is free, mRNA is produced at the baseline114

rate αm. When a promoter is occupied, the rate of mRNA production is115

affected by the factor 1/γi; for cases of repression, γi > 1, in order that116

the production of mRNA is reduced from its baseline value; for activation,117

0 < γi < 1 increasing mRNA production from this baseline value. To com-118

plete the system of reactions we consider that mRNA and protein molecules119

are removed from any voxel within the domain (i.e. degrade) at rates µm120

and µp, respectively. The initial rate constants used in simulations for re-121
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pressilators are given in Table 1; these are taken as values consistent with122

the robust parameter regime determined by Sturrock et al. (2013). Note that123

when n = 1, this system of equations is exactly that of the Hes1 system, as124

given in Sturrock et al. (2013).125

2.2. Molecular Diffusion126

Molecular diffusion is prescribed by the movement of mRNA and protein127

molecules between voxels, i.e. from a voxel, ψj, to a randomly selected128

adjacent voxel, ψk. We model it as a first-order event and treat the diffusive129

process in much the same way as the above reactions. Specifically, we consider130

Sij

dijk−−→ Sik (1)

where Sij denotes a species (either mRNA or protein) of gene i located in131

voxel ψj. Hence diffusion is governed by a “jump” rate constants, dijk, which132

depends on the macroscopic diffusion coefficient, D, and the shape and size133

of voxels ψj and ψk. Note dijk = 0 for unconnected mesh elements since134

molecules can only “jump” between neighbouring voxels. Gene site species135

i.e. the free and occupied promoters, fpi and opi are confined to their gene136

site voxels, and are thus given a diffusion coefficient of zero. For the purposes137

of our numerical investigations, we will assume that the diffusion rates of all138

mRNA and protein species are the same, and will be denoted by D. However,139

this value will be varied in certain computational simulations. The biochem-140

ical reactions and diffusion jumps are governed by a reaction-diffusion master141

equation, for the full mathematical formalism of this please see Appendix A.142
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Cytoplasmic Reaction Description Parameter value

mi
αp−−→ mi + pi translation of protein αp = 3min−1

ith gene site Reactions Description Parameter value

fpi + pi−1
k1−−⇀↽−−
k2

opi binding/unbinding of pro-

tein with the ith promoter

k1 = 1× 108M−1min−1

k2 = 0.05min−1

fpi
αm−−→ fpi +mi basal transcription of

mRNA

αm = 3min−1

opi
αm/γi−−−→ opi +mi altered transcription of

mRNA

αm = 3min−1

e.g. γi = 1000 (repression)

Global Reactions Description Parameter value

mi
µm−−→ ∅ degradation of mRNA µm = 0.06min−1

pi
µp−−→ ∅ degradation of protein µp = 0.03min−1

Table 1: The reaction processes and their accompanying parameter values

used throughout this investigation. The colours indicate where in the domain

the reactions take place - green in the cytoplasm, red within the promoter

voxel and black globally.
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2.3. Simulations143

At any given time the state of the system is described by the number of each144

chemical species within the domain. Changes to the state will either be by145

the chemical reactions at the voxel level or the movement (diffusion jumps)146

of a molecule between neighbouring voxels - see Table 1. The temporal evolu-147

tion of the probability distribution of each state in the state space is governed148

by the reaction diffusion master equation (RDME) - see Appendix A. We149

complete the model set-up with zero-flux boundary conditions at the cell150

membrane, while we impose continuity of flux on the nuclear membrane.151

Note, in reality nucleocytoplasmic transport is a complex process; the trans-152

location of proteins from the cytoplasm to the nucleus, for example, requires153

proteins to bind with importins to navigate the nuclear pore complex. In154

this paper, however, we limit transport by diffusion and require that pro-155

teins must first make it to the voxel containing the promoter in order to156

start the transcription process. The model can easily be extended to include157

this process and has been done for the deterministic case (see, Sturrock et al.,158

2011). For initialisation, we suppose that there is only a single free promoter159

within each gene/promoter voxel.160

161

We solve the spatial-stochastic system on the 3D domain given in Figure 1,162

through use of the URDME (Unstructured-mesh Reaction-Diffusion Master163

Equation) software framework. URDME is implemented through a Matlab164

interface which couples the RDME (with reaction propensities written in an165

ANSI C file) to the geometry and tetrahedral mesh created by the finite-166

element package COMSOL. COMSOL determines the diffusion rates dijk for167
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each species in each voxel. URDME uses a computational solver which is an168

efficient implementation of the next subvolume method, NSM (Gibson and169

Bruck, 2000). For a precise description of the URDME framework and how it170

is implemented we refer the reader to the original articles where this software171

is first described (Cullhed et al., 2008; Engblom et al., 2009; Drawert et al.,172

2012).173

3. Repressilators174

3.1. The Hes1 System175

The Hes1 protein (a basic helix-loop-helix (bHLH) transcription factor) is a176

useful starting point for a simple negative feedback GRN, since it is known to177

repress the transcription of its own gene through direct binding to regulatory178

sequences in the Hes1 promoter (Hirata et al., 2002). As such we refer to it179

as a one-gene repressilator; a schematic of the Hes1 system is shown in Fig-180

ure 2. It is known that periodically changing levels of Hes1 protein controls181

embryonic development, specifically in correctly timed somite segmentation182

(see, for example, Kageyama et al., 2007). Mathematical models have sought183

to reproduce this fluctuating expression. For a PDE model, Chaplain et al.184

(2015) rigorously proved that the diffusion parameter controls whether or not185

the system oscillates. Macnamara and Chaplain (2016) further indicated the186

importance of spatial aspects showing that the variation of molecular con-187

centrations over time is governed by the combination of diffusion coefficients188

and locations of transcription and translation within a cell. The investiga-189

tion of Sturrock et al. (2013) showed, using wavelet analysis, that periods190

comparable with those found experimentally could be discerned from the191
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spatial-stochastic model results. We model the Hes1 system using the reac-

mRNA

Hes1

protein

hes1

Figure 2: Simple schematic of the Hes1 gene regulatory system. Hes1 protein

is produced from hes1 mRNA via translation, but inhibits the production of

hes1 mRNA (represses or down-regulates transcription). The colours corres-

pond to where the molecular reactions take place, i.e. red for at the promoter

site and green in the cytoplasm.

192

tions given in Table 1 where n = 1. We take γ = 1000 which is significantly193

high enough that repression is extremely efficient and effectively the gene is194

turned off.195

3.2. Varying the Diffusion Coefficients196

In this Section we look at varying the diffusion coefficient, D, and present197

the results of the spatial-stochastic model for a one-gene repressilator (e.g.198

Hes1). We place the single promoter at the origin and simulate the behaviour199

over the spherical domain depicted in Figure 1 for 1600 minutes (capturing200

just over a days worth of data). The results are presented in Figure 3.201

202

For a gene site at the origin we note that there is a minimum diffusion coef-203

ficient, Dsyn & 1 × 10−13m2min−1, such that protein can be synthesised; if204

the diffusion coefficient is equal to or lower than this, mRNA either fails205

to reach the cytoplasm or does not survive long enough once it reaches the206
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Figure 3: Simulation results for the Hes1 model showing the mRNA and

protein copy numbers along with the promoter behaviour (left to right, re-

spectively) as we vary the diffusion coefficient (top to bottom). Units of the

diffusion coefficient, D, are m2min−1. The promoter is either free, fp, or

occupied, op.
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cytoplasm for protein to be synthesised. This is shown clearly in the top207

panel of Figure 3; at no time is there any protein and the promoter is al-208

ways free. For a diffusion coefficient in the range, Dsyn < D < Dbind, where209

Dbind & 5 × 10−13m2min−1 mRNA survives long enough for protein to be210

synthesised but in turn the protein does not survive long enough to diffuse211

back to the gene site in order to occupy the promoter (as shown in the second212

panel of Figure 3; protein is produced but the promoter remains free for all213

time). Since the promoter always remains free, dynamics observed in the214

mRNA and protein levels are purely stochastic for a diffusion coefficient in215

this range.216

217

For a diffusion coefficient higher than Dbind, protein is both synthesised and218

able to diffuse back to the promoter site of the gene within the nucleus and219

binds with the promoter such that the promoter fluctuates between being free220

and occupied. The resulting negative feedback from the protein-promoter221

binding is apparent in both the mRNA and protein levels. As we increase222

the diffusion coefficient there is more likelihood that a protein molecule will223

be available to bind with the promoter, so we see more frequent changes in224

the promoters occupancy (observe the differences in promoter behaviour for225

D = 1 × 10−12m2min−1 and D = 1 × 10−10m2min−1). This corresponds to226

greater amplitude fluctuations in both mRNA and protein copy numbers.227

At the same time the protein exhibits higher copy numbers. For these latter228

regimes it is possible to investigate potential periodic behaviour, which we229

examine in Section 3.4. Note, it is unlikely that the diffusion rate varies over230

the full range of values we have selected here; however, we show the differ-231
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ences in behaviour from a theoretical point of view. Consistent with previous232

models (e.g. Sturrock et al., 2013; Macnamara and Chaplain, 2016) it is likely233

that a typical diffusion coefficient is approximately D = 1× 10−12m2min−1,234

i.e. a diffusion coefficient which gives rise to possible periodic fluctuations.235

Throughout this paper we will focus on this diffusion coefficient regime, whilst236

also considering cases where D = 1 × 10−10m2min−1 for comparison. It is237

likely that in reality the diffusion of mRNA and protein may differ from each238

other. Previous work (e.g. Sturrock et al., 2011, 2013; Macnamara and Chap-239

lain, 2016) has varied the diffusion coefficients and the underlying dynamics240

remain qualitatively unchanged over wide range. Furthermore, we find, for241

example, no difference in the dynamics and subsequent analysis if we increase242

the diffusion rate of protein to Dp = 1 × 10−10m2min−1 while keeping the243

diffusion rate of mRNA as Dm = 1 × 10−12m2min−1. As such we proceed244

with keeping the diffusion rates the same for both species.245

3.3. Varying the Promoter Location246

In this section we consider how the position of the promoter site affects247

the behaviour of mRNA and protein copy numbers. In Figure 4 we show248

the mRNA, protein and promoter behaviour for three different defined pro-249

moter locations. Specifically we place the promoter site at three locations250

(px, 0, 0), where px = {0.5µm, 1.5µm, 2.5µm}, and in all cases we fix D =251

1× 10−12m2min−1. As the promoter location is moved closer to the nuclear-252

cytoplasm membrane the likelihood that a protein binds with the promoter253

increases and the promoter fluctuates more frequently between free and oc-254

cupied. This leads to more frequent fluctuations in both mRNA and protein255

levels. However, when the promoter location is very close to the nuclear-256
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Figure 4: Simulation results for the Hes1 model showing the mRNA and

protein copy numbers along with the promoter behaviour (left to right, re-

spectively) as we vary the location of the promoter (top to bottom). The

diffusion coefficient used is D = 1 × 10−12m2min−1; the promoter is placed

at (px, 0, 0), where px = {0.5µm, 1.5µm, 2.5µm}. The promoter is either free,

fp, or occupied, op.

cytoplasm membrane the promoter is occupied more often than it is free.257

The knock-on effect is far lower copy numbers of mRNA which is repressed258

by the protein-promoter complex and subsequently lower protein copy num-259

bers.260
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3.4. Determining Periodic Behaviour261

We are interested in determining the presence of periodic behaviour in the262

levels of the molecular species. Following Sturrock et al. (2013) we estimate263

the period(s) of oscillations using a Morlet continuous time wavelet trans-264

form (CWT) as implemented by a MATLAB toolbox called WAVOS, please265

see Harang et al. (2012) for details. Given the highly oscillatory and noisy266

nature of our trajectories, the use of standard Fourier techniques can lead to267

inaccurate estimates of the period, as Fourier analysis assumes stationarity268

of the signal and that its basis functions are unbounded in time (Mallat,269

1998). Wavelets, in contrast, are localised in both time and frequency. This270

localises the analysis, allowing the changes in signal properties to be tracked271

over time (Torrence and Compo, 1998). The instantaneous period is calcu-272

lated for each time step and so varies for a single simulation, we make use273

of gaussian edge elimination to minimise artefacts in the approximation of274

the period. For example, in Figure B.22, to be found in Appendix B we275

give the trajectories of five individual simulations of the Hes1 model with276

D = 1× 10−12m2min−1 and the promoter site located at the origin; we show277

the behaviour of the mRNA and protein copy numbers and the instantan-278

eous period calculated from the protein trajectory in each case. We also279

show on the plots of the instantaneous periods lines which indicate the mean280

and mode of the period data. As can be seen in Figure B.22 in several cases281

neither provides a good representation of the behaviour of the period data;282

potentially no true period found for a trajectory may lie on the mean period283

line and the mode may not capture the full profile of the data in which there284

may be more than one dominating period. In the analysis which follows we285
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refer to period “modes” which are taken to be statistically significant peri-286

ods which dominate the data. To calculate these period modes we group the287

period data into 5 minute intervals and find the proportion of periods found288

in each - we then use the MATLAB function findpeaks to determine max-289

ima of this derived data, we stipulate that a maxima should be at least 5% of290

the data series and that maxima must be separated by at least 45 minutes.291

For any given simulation we observe that there may be any number from a292

single period mode to four distinct period modes. In Figure 5 we determine,293

for each of 100 runs of the simulation for both D = 1 × 10−12m2min−1 and294

D = 1× 10−10m2min−1, how many period modes there are.295

D = 1× 10−12m2min−1 D = 1× 10−10m2min−1

Figure 5: Histogram indicating how the number of period modes determ-

ined for 100 simulations of the Hes1 model for different diffusion coefficient

regimes.

296

In Figure 6 we display the results from 50 runs of the simulation (for both297

D = 1 × 10−12m2min−1 and D = 1 × 10−10m2min−1); we show the range298
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of periods detected (black lines), the mean of those detected periods (red299

squares) and any period modes (blue diamonds). The majority of detected300

periods are found to lie between 100 and 500 minutes. Note that the hori-301

zontal dashed line indicates the maximum period which can be ascertained302

from the time series data; it may be the case that when only this maximum303

period is discovered (e.g. in simulation 11) the WAVOS tool has failed to de-304

tect a meaningful period, periods which fall on this line must be treated with305

caution. For D = 1× 10−10m2min−1 we typically observe a far greater range306

of periods; equally, it is more likely that there will be two or more distinct307

period modes. However, a high number of period modes sit on the maximum308

line, possibly for such simulations longer periods could be detected if we in-309

creased the number of time steps, however, since the Hes1 system typically310

displays periods of around two hours (Hirata et al., 2002) such longer peri-311

ods are biologically unrealistic and irrelevant to this current investigation.312

Increasing the diffusion coefficient enables mRNA to travel to the cytoplasm313

more readily and hence for protein synthesis to occur at a higher rate (com-314

pare the protein behaviour in Figure 3). In turn this enables protein to travel315

to the nucleus, consequently, there will be more protein available to bind to316

the promoter, reflected in the significantly higher rate of binding of protein317

to the promoter (compare the promoter behaviour in Figure 3) switching it318

between free and occupied. This increased fluctuation turning repression on319

and off frequently leads to more complex periodic behaviour in the protein320

copy numbers, with bi-modal and multi-modal periods detected.321

322

We repeated this period analysis with D = 1 × 10−12m2min−1 and the pro-323
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Figure 6: Period data for 50 simulations of the Hes1 model for different

diffusion coefficient regimes. The red squares are the mean periods, the black

lines indicate the range of periods, the blue diamonds indicate the value of

the period mode(s).

moter site located at (2.5µm, 0, 0), the results are shown in Figure 7. We324

typically observe shorter mean periods dominating, with the majority of de-325

tected periods laying in the range 100 to 400 minutes. In addition, for this re-326

gime, typically more than one period mode is detected. Moving the promoter327

closer to the nucleus-cytoplasm membrane leads to increased fluctuations in328
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Figure 7: Top plot: period data for 50 simulations of the Hes1 model: the red

squares are the mean periods, the black lines indicate the range of periods,

the blue diamonds indicate the value of the period mode(s). Bottom plot:

histogram indicating the number of period modes determined for 100 simu-

lations. D = 1× 10−12m2min−1 and the promoter is located at (2.5µm, 0, 0).

the promoter status turning repression on and off frequently and resulting329

in more complex periodic behaviour in the protein copy numbers. However,330

when the promoter is very close to the membrane the frequently occupied331

promoter serves to provoke more rapid mRNA and protein fluctuations and332

hence shorter periods.333
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3.5. Two-gene Repressilator334

Figure 8: Simple schematic of the two-gene repressilator system. The mRNA

of each species produces its own protein. The protein of one species inhibits

the production of mRNA of the other species. The colours correspond to

where the molecular reactions take place, i.e. red for at the promoter site

and green in the cytoplasm.

We extend the work of Sturrock et al. (2013) to consider a two-gene (or spe-335

cies) repressilator system. For a two-gene repressilator, each of the two genes336

inhibits the other, i.e. the protein from one species inhibits the production337

of mRNA from the other. A simple schematic of a generic two-gene repressil-338

ator is shown in Figure 8.339

340

We simulate the spatial-stochastic model, with reactions (and associated341

parameters) given in Table 1, where n = 2. We place two individual gene342

sites within the inner sphere (nucleus). In Figure 9 we show the mRNA and343

protein behaviour for both gene species for two different diffusion coefficient344

regimes with promoter sites at (±0.5µm, 0, 0). Overall the behaviour for each345

species in a two gene repressilator can be compared to the behaviour of a346

single one gene repressilator species, with mRNA, protein copy numbers and347

promoter status behaviours being roughly similar (compare to the bottom348

two panels in Figure 3).349
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Figure 9: Simulation results for the two-gene repressilator model showing the

behaviour of the mRNA and protein copy numbers as we vary the diffusion

coefficient. The promoters are located at (±0.5µm, 0, 0).

350

Differences in behaviour between the one and two-gene repressilators may351

be noted when the promoter locations are moved closer to the nuclear-352

cytoplasm membrane. In Figure 10 we show the mRNA and protein beha-353

viour for both gene species when D = 1× 10−12m2min−1 with promoter sites354

at (±2.5µm, 0, 0). We note significantly different behaviour when compared355

with the bottom panel of Figure 4. In this case protein levels in particular356

are more consistent over time, remaining elevated. Equally, copy numbers of357
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mRNA and protein are higher. To investigate these discrepancies further we358

consider the spatial behaviour in the following section.359

mRNA protein

Figure 10: Simulation results for the two-gene repressilator model show-

ing the behaviour of the mRNA and protein copy numbers when D =

1× 10−12m2min−1 and the promoters are located at (±2.5µm, 0, 0).

360

3.5.1. Spatial Behaviour361

In Figure 11 we show snapshots at distinct times of the spatial distribution362

of the protein species within the spherical domain. Theses plots correspond363

to the temporal behaviour given by the top right panel of Figure 9, i.e. where364

D = 1×10−12m2min−1 and the promoters are located at (±0.5µm, 0, 0). Each365

plot displays a single slice through the 3D domain (z = 0) and the colour366

indicates the protein copy number in each visualised part-voxel. For movies367

showing the behaviour for the full range of times please see the supplement-368

ary material (these movies show the behaviour over three 2D slices through369

the 3D domain). We observe the fluctuating behaviour of the protein copy370

number with times when little protein is noted and times when it appears371
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Figure 11: Simulation results for the two-gene repressilator model showing

the spatial distribution of the protein copy numbers at the times given. D =

1× 10−12m2min−1 and the promoter are located at (±0.5µm, 0, 0).

in several voxels throughout the domain. Although protein copy numbers372

do not appear to be particularly concentrated about any particular voxel(s)373

the highest peaks of protein are to be found close to the nuclear-cytoplasm374

membrane.375

376

By way of comparison, in Figure 12, we show the spatial behaviour for377

simulations where D = 1 × 10−12m2min−1 and the promoter sites are loc-378

ated close to the nuclear membrane at (±2.5µm, 0, 0), corresponding to the379

righthand plot of Figure 10. Again each plot displays a single slice through380
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the 3D domain (z = 0) and the colour indicates the protein copy number381

in each part-voxel. For movies showing the behaviour for the full range of382

times please see the supplementary material. We note some variation of the383

levels with time, however, the main observation is that high protein levels384

are localised close to the nuclear-cytoplasm membrane and fixed close to its385

associated gene promoter site, with protein levels rarely seen in the opposite386

half of the domain. Since the protein of one gene must bind with the pro-387

moter of the other gene to activate the negative feedback, this accounts for388

the differences observed for a two-gene repressilator compared to a one-gene389

repressilator. We note that in this case each promoter is rarely occupied390

(promoter behaviour not shown here), the protein molecules not being in the391

correct part of the domain to bind with the appropriate promoter. As such392

the frequent lack of a protein-promoter complexes leads to infrequent repres-393

sion of the mRNAs which in turn translates into consistent and high levels394

of protein. For the Hes1 system, with only one gene, protein localisation395

within the domain would not have this affect since the protein binds with396

the promoter of its own gene. Instead since the protein is localised close to397

its promoter this accounts for the observation that the promoter is frequently398

occupied for the one-gene system since there is always protein available to399

bind.400

401

For completeness in Figure 13 we show snapshots at distinct times of the402

spatial distribution of the protein species which correspond to the tem-403

poral behaviour given by the bottom right panel of Figure 9, i.e. where404

D = 1 × 10−10m2min−1 and the promoters are located at (±0.5µm, 0, 0).405
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Figure 12: Simulation results for the two-gene repressilator model showing

the spatial distribution of the protein copy numbers at the times given. D =

1× 10−12m2min−1 and the promoter are located at (±2.5µm, 0, 0).

Each plot displays three 2D slices through the 3D domain and the colour in-406

dicates the protein copy number in each part-voxel on each slice. For movies407

showing the behaviour for the full range of times please see the supplement-408

ary material. For both protein species fluctuations are observed, with times409

when very little protein is noted throughout the domain and times when it410

is widespread. The increase in diffusion coefficient can be clearly noted by411

the speed and extent to which protein spreads throughout the domain.412

413
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Figure 13: Simulation results for the two-gene repressilator model showing

the spatial distribution of the protein copy numbers at the times given. D =

1× 10−10m2min−1 and the promoter are located at (±0.5µm, 0, 0).

3.5.2. Period Analysis414

We carried out period analysis withD = 1×10−12m2min−1 and the promoters415

defined at (±0.5µm, 0, 0), the results are shown in Figures 14 and 15. In416

general the species of a two gene repressilator show period behaviour as417

for a one gene repressilator with either one or two distinct period modes.418

However, for individual simulations, it does not follow that the behaviour419

of the species is equivalent. For example, one species may exhibit a single420
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period mode while the other species exhibits two. In this case of a two gene421

repressilator we see quite a number of cases in which WAVOS only detects422

a single period equal to the maximum possible period, we should be wary423

in such cases whether a true and realistic period has been detected. For the424

deterministic case in Macnamara and Chaplain (2016) it was noted that a425

two-gene repressilator was a weak oscillator compared to the equivalent one-426

gene repressilator. This may well be the case here too but is not a focus of427

this investigation.428

429

4. Activator-Repressor Systems430

We can easily extend our investigation to examine activator-repressor sys-431

tems, rather than repressilator-only systems. We do this by considering the432

parameter γi, as described by Sturrock et al. (2013). For cases of repression433

γi > 1, in order that the production of mRNA is reduced from its baseline434

value, αm, when the promoter is occupied by the appropriate protein. If435

we wish a specific protein to promote rather than repress the production of436

mRNA, we require that 0 < γi < 1.437

4.1. Two-gene Activator-Repressor438

Specifically we will consider a two-gene activator-repressor system; a simple439

schematic of which is shown in Figure 16; this can be directly compared to440

Figure 8. We note that now the protein of species 1 promotes rather than441

inhibits the production of species 2 mRNA.442

443

We simulate the spatial-stochastic model, with reactions (and associated444
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Figure 14: Period data for 50 simulations of the two gene repressilator model;

the red squares are the mean periods, the black lines indicate the range of

periods, the blue diamonds indicate the value of the period mode(s). D =

1× 10−12m2min−1 and the promoters are located at (±0.5µm, 0, 0).

parameters) given in Table 1 (with the sole exception being γi; we choose445

γ1 = 10 and γ2 = 0.1) where n = 2. We place two individual gene sites446

within the inner sphere (nucleus), specifically at (±0.5µm, 0, 0). In Figure 17447

we show the mRNA and protein behaviour for both gene species for two differ-448

ent diffusion coefficient regimes. For this activator-repressor system we notice449

that although protein fluctuations are seen in both species the amplitudes of450
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Figure 15: Histogram indicating the number of period modes determined for

100 simulations of the two gene repressilator model. D = 1× 10−12m2min−1

and the promoters are located at (±0.5µm, 0, 0).

mRNA 2

protein 1

protein 2

mRNA 1

Figure 16: Simple schematic of the two-gene activator-repressor system. The

mRNA of each species produces its own protein. The protein of species 1

promotes the production of species 2 mRNA, while the protein of species 2

inhibits the production of species 1 mRNA. The colours correspond to where

the molecular reactions take place, i.e. red for at the promoter site and green

in the cytoplasm.
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these fluctuations are typically far greater for species 2 (the promoted spe-451

cies) than for species 1 (the inhibited species). For D = 1× 10−12m2min−1,452

the promoter behaves in a very similar way for both species, whereas for453

D = 1 × 10−10m2min−1 we notice long periods when the promoter for spe-454

cies 1 is switched off (promoter behaviour not shown here) corresponding455

to very low although still fluctuating levels of mRNA and protein. As for456

the repressilator systems we observe that increasing the diffusion coefficient457

increases the frequency of promoter-protein binding, this leads to more fre-458

quent fluctuations in the mRNA and protein copy numbers.459

460

4.2. Spatial Behaviour461

In Figure 18 we show snapshots at distinct times of the spatial distribution of462

the protein species within the spherical domain, when D = 1×10−12m2min−1
463

and the promoters are located at (±0.5µm, 0, 0) in Figure 19 the behaviour464

is shown when D = 1 × 10−10m2min−1. Each plot displays three 2D slices465

through the 3D domain and the colour indicates the protein copy number466

in each part-voxel on each slice. For movies showing the behaviour for the467

full range of times please see the supplementary material. For both diffusion468

coefficient regimes the levels of protein of species 1 (the inhibited species)469

fluctuate far less than the levels of protein of species 2 (the activated species).470

When D = 1 × 10−12m2min−1 the highest levels of protein of either species471

typically appear close to the nuclear-cytoplasm membrane whereas when472

D = 1 × 10−10m2min−1 protein is found more uniformly throughout the473

domain.474

475
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Figure 17: Simulation results for the two-gene activator-repressor model

showing the behaviour of the mRNA and protein copy numbers. The pro-

moters are located at (±0.5µm, 0, 0) and parameters are as given in Table 1

bar γi, here γ1 = 10 and γ2 = 0.1.

4.2.1. Period Analysis476

We repeat the period analysis and the results are shown in Figures 20 and477

21. We observe differences in the period behaviour of the two species. The478

inhibited species (species one) typically exhibits one or two distinct periods.479

The promoted species is more likely to only exhibit a single period. In actual480

fact it is likely that we are unable to find true and realistic periods for this481

species for many of the simulations; notice the high proportion of simula-482

33



p1 p2

Figure 18: Simulation results for the two-gene activator-repressor model

showing the spatial distribution of the protein copy numbers at the

times given. D = 1 × 10−12m2min−1 and the promoters are located at

(±0.5µm, 0, 0).

tions which result in single period modes lying on the maximal period line483

(indicated by the dashed black line). While interesting dynamics are clearly484

observed both temporally and spatially for this activator-repressor system485

true periodic behaviour maybe elusive. This appears in agreement with the486

corresponding deterministic model of Macnamara and Chaplain (2016) which487

was found to be a weak oscillator.488
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Figure 19: Simulation results for the two-gene activator-repressor model

showing the spatial distribution of the protein copy numbers at the

times given. D = 1 × 10−10m2min−1 and the promoters are located at

(±0.5µm, 0, 0).

5. Discussion and Conclusions489

In this paper we have developed spatial-stochastic models of gene regulatory490

networks, focussing on repressilators and activator-repressor systems, and491

explored the effects of altering the diffusion coefficients of the molecules and492

the precise location of the promoter region in the nucleus on the spatio-493

temporal behaviour of such systems. Before exploring synthetic GRNs, we494
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Figure 20: Period data for 50 simulations of the two gene activator-repressor

model; the red squares are the mean periods, the black lines indicate the

range of periods, the blue diamonds indicate the value of the period mode(s).

D = 1× 10−12m2min−1 and the promoters are located at (±0.5µm, 0, 0).

further investigated the Hes1 system (which may be classified as a one-gene495

repressilator) previously modelled by Sturrock et al. (2013). We then ex-496

tended this work to focus on a two-gene repressilator system before also497

exploring an activator-repressor system.498

499

Our investigation into the Hes1/one-gene repressilator system showed that,500
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Figure 21: Histogram indicating the number of period modes determined

for 100 simulations of the two gene activator-repressor model. D = 1 ×

10−12m2min−1 and the promoters are located at (±0.5µm, 0, 0).

as for the PDE model (Macnamara and Chaplain, 2016), spatial aspects501

play a crucial role in determining the spatio-temporal behaviour of such sys-502

tems. Spatio-temporal dynamics are governed by diffusion coefficients and503

promoter locations. This is apparent in both the time series data - where we504

note increased protein copy numbers and fluctuations for increased diffusion505

coefficient, and the spatial distributions of the molecules - where we observe506

localisation of protein levels as the promoter is moved closer to the nucleus-507

cytoplasm membrane. Our computational simulation results show that dif-508

fusion coefficients of the molecules must lie within some appropriate range509

for oscillations to occur. If the diffusion of molecules is too slow they will510

not be able to reach the appropriate locations for transcription/translation511

processes to occur. If diffusion occurs too quickly and molecules spread too512

efficiently throughout the domain promoter-binding occurs too frequently513
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leading to unrealistic periodic behaviour. Equally, the positioning of pro-514

moter sites requires careful consideration so as to achieve spatio-temporal515

behaviour which is biologically realistic and relevant. Moving the promoter516

location closer to the nuclear-cytoplasm membrane has a similar effect to in-517

creasing the diffusion coefficient. However, if the promoter is positioned very518

close to the membrane a frequently occupied promoter leads to low mRNA519

and protein copy numbers and more frequent low amplitude fluctuations. We520

note that results for the Hes1 system are comparative to those determined521

from the PDE model, which captures the essential features of the behaviour522

of such gene regulatory systems. However, the stochastic model implemented523

here would allow a direct comparison with experimental data such as seen in524

Hirata et al. (2002), for example.525

526

Our investigations into synthetic systems provide further corroboration of527

the importance of considering spatial aspects. Both the two-gene repressil-528

ator and activator-repressor systems show considerably different dynamics529

depending on diffusion coefficient and promoter location. Differences are also530

observed between the two systems and the one-gene Hes1 system. While a531

two-gene repressilator may behave in a similar way to two one-gene repressil-532

ators the spatio-temporal dynamics of the system are entirely dependant on533

the level of diffusion and placement of promoter locations. Negative feed-534

back within a two-gene repressilator may be switched on or off depending on535

whether the protein molecules are able to travel to the appropriate promoter536

sites for binding. Only with negative feedback activated may periodic beha-537

viour be observed. Two-gene systems behave very differently when coupled538
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by both positive and negative feedback as in the activator-repressor system;539

the inhibited species fluctuating more rapidly and at much lower copy num-540

bers such that periodic behaviour is less frequently observed. However, while541

this system may not exhibit true and realistic periodic behaviour interest-542

ing spatio-temporal behaviour is observed which is dependant on the spatial543

terms within the model set-up. Again the behaviour of the stochastic sys-544

tems corroborate to an extent with deterministic models.545

546

In summary, deterministic spatio-temporal models provide informative qual-547

itative results about these GRN systems, however, the stochastic models548

developed and implemented here effectively offer in silico single cell exper-549

iments which can be compared to the single cell experiments of biologists.550

Such a comparison can be done for both real and synthetic systems alike.551

The purpose of this paper is to introduce the canonical form of a model552

which may be adapted to fit any cyclic system of genes coupled by any com-553

bination of positive and negative feedback, and in particular we discuss the554

behaviour of two-gene repressilator and activator repressor systems. These555

do not link directly with known biological systems at this time but rather556

serve as an example of the modelling framework (see, Purcell et al., 2010;557

O’Brien et al., 2012). In Szymanska et al. (2018) we model the NF-κB system558

using a similar spatial-stochastic approach, and the computational simula-559

tion results obtained may be directly compared to experimental data such as560

in Nelson et al. (2004) and Ashall et al. (2009). A future aim of the models561

developed in this paper would be to provide a full spatial-stochastic model562

of the p53-Mdm2 system and compare it to experimental data such as in563
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Lahav et al. (2004). p53 is an important intracellular protein and as such564

it has garnered much interest since its discovery almost 40 years ago (Lane565

and Crawford, 1979) and subsequent role as a tumour suppressor and its566

ability to control apoptosis (Lane, 1992). If the dynamics of the p53-Mdm2567

GRN were understood more deeply, this would improve the ability to design568

anti-cancer drugs/therapies which target the appropriate part of the pathway.569

570

The study of synthetic GRNs is of great relevance given the recent growth571

in the field of synthetic biology. Interdisciplinary teams of biologists and572

mathematicians build models of such systems to analyse and gain a deeper573

understanding of the underlying biology of complex intracellular systems (see,574

for example, Balagadde et al., 2008; Becskei and Serrano, 2000; Elowitz and575

Leibler, 2000; Purcell et al., 2010; Chen et al., 2012; O’Brien et al., 2012;576

Yordanov et al., 2014). At the same time, the ability to simulate such mod-577

els in silico alleviates financial and potentially ethical costs associated with578

in vitro and in vivo experiments. The findings in this paper reinforce the579

message that molecular movement must be taken into account when trying580

to design such systems. How quickly molecules are able to move through a581

domain and access the precise locations with transcription/translation pro-582

cesses occur has a critical effect on the overall spatio-temporal behaviour of583

the system.584
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Appendix A. The Reaction Diffusion Master Equation589

The model discussed in Section 2 is governed by a reaction-diffusion master590

equation (RDME) for p(x, t) - the probability that the system can be found591

in state x at time t. The RDME is592

d

dt
p(x, t) = M p(x, t)︸ ︷︷ ︸

reactions

+ Dp(x, t)︸ ︷︷ ︸
diffusion

. (A.1)

While we consider a spherical domain which globally is not well-mixed (in593

order to account for spatial inhomogeneity) we discretise it into K non-594

overlapping voxels inside which we do assume a well-stirred system in which595

species are uniformly distributed and under thermal equilibrium. By doing596

this we can model the reactions, which occur within voxels, as a stochastic597

continuous-time discrete space Markov process. The reactions are governed598

by a chemical master equation (CME) for M reactions concerning G genes599

in K voxels,600

M p(x, t) =
K∑
j=1

M∑
r=1

ωjr(xj· − µjr)p(x1·, . . . ,xj· − µjr, . . . ,xK·, t)

−
K∑
j=1

M∑
r=1

ωjr(xj·)p(x, t) (A.2)

where the state of the system, x, is described by a K × N matrix which at601

anyone time holds the copy number of each species s = 1, . . . , N within each602

voxel j = 1, . . . , K (note for the systems we consider N = 4G as there are603

4 species per gene). The propensity function ωjr(xj·) describing the rate of604

reaction, r, depends on the copy number of the species within the jth voxel,605
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ψj (note xj· is the jth row of the K ×N matrix). The 1×N stoichiometry606

vector, µjr specifies the change in copy number of the reactants and products607

for reaction, r in voxel, ψj.608

609

For example, for the single gene Hes1 system there are four species fp, op,610

m and p and seven reactions:611

r1 : m
αp−−−−−→ p (+ m)

r2 : fp + p
k1−−−−−→ op

r3 : op
k2−−−−−→ fp + p

r4 : fp
αm−−−−−→ m (+ fp)

r5 : op
αm/γ−−−−−→ m (+ op)

r6 : m
µm−−−−−→ ∅

r7 : p
µp−−−−−→ ∅.

Since we assume mass action kinetics the propensity function for reaction,612

r1, for example is αp[m] where [m] is the copy number of mRNA. The stoi-613

chiometry vector for this reaction is [0, 0, 0, 1] - there is a net gain of one614

protein molecule per reaction.615

616

While reactions are summed over voxels to add to the RDME we model617

diffusion as linear jumps governed by the following master equation618

Dp(x, t) =
N∑
s=1

K∑
j=1

K∑
k=1

a(x·s − νsjk)p(x·1, . . . ,x·s − νsjk, . . . ,x·N , t)

−
N∑
s=1

K∑
j=1

K∑
k=1

a(x·s)p(x, t) (A.3)
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The propensity function a(x·s) = dijk[Sij] (where [Sij] is the copy number619

of the ith species in the jth voxel) describes the “rate” of diffusion, i.e.620

the probability of species, Sij in voxel ψj moving to one of the immediate621

neighbour voxels ψk (note x·s is the sth column of the K × N matrix).622

The K × 1 stoichiometry vector, vsjk, specifies the change in copy number of623

species s and so has all components zero except for νsjk(j) = −1 and νsjk(k) =624

1 - a molecule leaves the jth voxel and enters the kth voxel. The jump rate625

constants, dijk vary depending on the size and shape of the voxels, for a626

detailed description of the theory for how to obtain correct rates, see Engblom627

et al. (2009). In brief, however, the value 1/(dijk[Sij]) is the expected time628

for the first molecule of species Si to leave voxel ψj and become well-mixed629

in voxel ψk. A reasonable requirement on these rate constants is that they630

are chosen in such a way that the diffusion process converges to the diffusion631

equation in the thermodynamic limit.632

Appendix B. Period Analysis of the Hes1 Time Series633

We display the mRNA and protein copy numbers along with the instantan-634

eous period derived from the changes in protein copy number using WAVOS635

for five runs of the simulation of the Hes1 system with D = 1×10−12m2min−1.636

We observe quite disparate results; for some runs the instantaneous period637

determined remains roughly constant (notably panel five of Figure B.22),638

whereas for other runs there are clearly two distinct periods derived from639

the stochastic data for different time ranges (notably panels two and three640

of Figure B.22).641
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Eliaš, J., Clairambault, J., 2014. Reaction-diffusion systems for spatio-677

temporal intracellular protein networks: a beginner’s guide with two ex-678

amples. Comp. Struct. Biotechnol. J. 10, 14–22.679
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