52 research outputs found

    Interactions between human neutrophils and mucin-coated surfaces

    No full text
    Recently, we showed microscopically that bovine (BSM), porcine (PGM) and human (MG1) mucin coatings could suppress the adhesion of neutrophils to a polyethylene terephthalate-based model biomaterial (Thermanox). Here, using the release of reactive oxygen species (ROS) as a marker of material-induced neutrophil activation, the strong surface-passivating effects of these mucin coatings were corroborated. Under optimal adsorption conditions, all mucin species performed equally well, thus indicating a high degree of functional homology between the mucins. Cell adhesion and morphology correlated well with the release of ROS. Quartz crystal microbalance (QCM-D) analysis linked low neutrophil activation to efficient mucin surface-shielding. Interestingly, the shielding power appeared equal for thick expanded and thin compact mucin coatings. Combined mucin-serum coatings were found to be highly surface-passivating. Particularly, since our data suggested partly synergistic mucin-serum action, we highlight the possibility that pre-adsorbed mucins could provide favorable support for adsorbing host components

    Interactions between human neutrophils and mucin-coated surfaces

    No full text
    Recently, we showed microscopically that bovine (BSM), porcine (PGM) and human (MG1) mucin coatings could suppress the adhesion of neutrophils to a polyethylene terephthalate-based model biomaterial (Thermanox). Here, using the release of reactive oxygen species (ROS) as a marker of material-induced neutrophil activation, the strong surface-passivating effects of these mucin coatings were corroborated. Under optimal adsorption conditions, all mucin species performed equally well, thus indicating a high degree of functional homology between the mucins. Cell adhesion and morphology correlated well with the release of ROS. Quartz crystal microbalance (QCM-D) analysis linked low neutrophil activation to efficient mucin surface-shielding. Interestingly, the shielding power appeared equal for thick expanded and thin compact mucin coatings. Combined mucin-serum coatings were found to be highly surface-passivating. Particularly, since our data suggested partly synergistic mucin-serum action, we highlight the possibility that pre-adsorbed mucins could provide favorable support for adsorbing host components

    The Influence of Hydroxyapatite Nanoparticle Morphology on Embryonic Development in a Zebrafish Exposure Model

    No full text
    Nanomaterials are used in many different industries such as cosmetics, food, clothing, and electronics. There is increasing concern that exposure to nanoparticles (NPs) during pregnancy can adversely affect fetal development. It is well known that the size, charge, and chemistry of a nanoparticle can modulate embryological development. The role that particle morphology plays on early development, however, is still widely unknown. The present study aims to investigate the effect of hydroxyapatite nanoparticle (HANP) morphology on embryological development in a zebrafish exposure model. Four distinct HANP morphologies (dots, long rods, sheets, and fibers) were fabricated and characterized. Zebrafish embryos were exposed to HANPs (0-100 mg/L), and viability and developmental deformities were evaluated for up to 5 days post-fertilization (dpf). Malformations such as pericardial edema and axial curvature were apparent in embryos as early as 1 dpf, following exposure to the dot and fiber particles, and developed in embryos by 3 dpf in the sheet and long rod particle groups. Minimal death was observed in response to dot, long rod, and sheet particles (<= 25%), while fiber particles induced overwhelming toxicity (<= 60%) after 1 dpf, and complete toxicity during all subsequent time points. Collectively, these results suggest that nanoparticle morphology can significantly impact embryological development and should be a required consideration when designing nanomaterials for commercial use

    Nanoporesize affects complement activation

    No full text
    In the present study, we have shown the vast importance of biomaterial nanotexture when evaluating inflammatory response. For the first time in an in vitro whole blood system, we have proven that a small increase in nanoporesize, specifically 180 nm (from 20 to 200 nm), has a huge effect on the complement system. The study was done using nanoporous aluminiumoxide, a material that previously has been evaluated for potential implant use, showing good biocompatibility. This material can easily be manufactured with different pore sizes making it an excellent candidate to govern specific protein and cellular events at the tissue-material interface. We performed whole blood studies, looking at complement activation after blood contact with two pore size alumina membranes (pore diameters, 20 and 200 nm). The fluid phase was analyzed for complement soluble components, C3a and sC5b-9. In addition, surface adsorbed proteins were eluted and dot blots were performed to detect IgG, IgM, C1q, and C3. All results point to the fact that 200 nm pore size membranes are more complement activating. Significantly, higher values of complement soluble components were found after whole blood contact with 200 nm alumina and all studied proteins adsorbed more readily to this membrane than to the 20 nm pore size membrane. We hypothesize that the difference in complement activation between our two test materials is caused by the type and the amount of adsorbed proteins, as well as their conformation and orientation. The different protein patterns created on the two alumina membranes are most likely a consequence of the material topography

    Influence of nanoporesize on platelet adhesion and activation

    No full text
    In this study we have evaluated the influence of biomaterial nano-topography on platelet adhesion and activation. Nano-porous alumina membranes with pore diameters of 20 and 200 nm were incubated with whole blood and platelet rich plasma. Platelet number, adhesion and activation were determined by using a coulter hematology analyzer, scanning electron microscopy, immunocytochemical staining in combination with light microscopy and by enzyme immunoassay. Special attention was paid to cell morphology, microparticle generation, P-selectin expression and beta-TG production. Very few platelets were found on the 200 nm alumina as compared to the 20 nm membrane. The platelets found on the 20 nm membrane showed signs of activation such as spread morphology and protruding filipodia as well as P-selectin expression. However no microparticles were detected on this surface. Despite the fact that very few platelets were found on the 200 nm alumina in contrast to the 20 nm membrane many microparticles were detected on this surface. Interestingly, all microparticles were found inside circular shaped areas of approximately 3 mum in diameter. Since this is the approximate size of a platelet we speculate that this is evidence of transient, non-adherent platelet contact with the surface, which has triggered platelet microparticle generation. To the authors knowledge, this is the first study that demonstrates how nanotexture can influence platelet microparticle generation. The study highlights the importance of understanding molecular and cellular events on nano-level when designing new biomaterials

    Nanoporosity of Alumina Surfaces Induces Different Patterns of Activation in Adhering Monocytes/Macrophages

    Get PDF
    The present study shows that alumina nanotopography affects monocyte/macrophage behavior. Human mononuclear cells cultured on alumina membranes with pore diameters of 20 and 200 nm were evaluated in terms of cell adhesion, viability, morphology, and release of proinflammatory cytokines. After 24 hours, cell adhesion was assessed by means of light microscopy and cell viability by measuring LDH release. The inflammatory response was evaluated by quantifying interleukin-1β and tumour necrosis factor-α. Finally, scanning electron microscopy was used to study cell morphology. Results showed pronounced differences in cell number, morphology, and cytokine release depending on the nanoporosity. Few but highly activated cells were found on the 200 nm porous alumina, while relatively larger number of cells were found on the 20 nm porous surface. However, despite their larger number, the cells adhering on the 20 nm surface exhibited reduced pro-inflammatory activity. The data of this paper implies that nanotopography could be exploited for controlling the inflammatory response to implants

    Rebamipide Delivered by Brushite Cement Enhances Osteoblast and Macrophage Proliferation

    No full text
    Many of the bioactive agents capable of stimulating osseous regeneration, such as bone morphogenetic protein-2 (BMP-2) or prostaglandin E2 (PGE2), are limited by rapid degradation, a short bioactive half-life at the target site in vivo, or are prohibitively expensive to obtain in large quantities. Rebamipide, an amino acid modified hydroxylquinoline, can alter the expression of key mediators of bone anabolism, cyclo-oxygenase 2 (COX-2), BMP-2 and vascular endothelial growth factor (VEGF), in diverse cell types such as mucosal and endothelial cells or chondrocytes. The present study investigates whether Rebamipide enhances proliferation and differentiation of osteoblasts when delivered from brushite cement. The reactive oxygen species (ROS) quenching ability of Rebampide was tested in macrophages as a measure of bioactivity following drug release incubation times, up to 14 days. Rebamipide release from brushite occurrs via non-fickian diffusion, with a rapid linear release of 9.70%+/- 0.37% of drug per day for the first 5 days, and an average of 0.5%-1% per day thereafter for 30 days. Rebamipide slows the initial and final cement setting time by up to 3 and 1 minute, respectively, but does not significantly reduce the mechanical strength below 4% (weight percentage). Pre-osteoblast proliferation increases by 24% upon exposure to 0.4uM Rebamipide, and by up to 73% when Rebamipide is delivered via brushite cement. Low doses of Rebamipide do not adversely affect peak alkaline phosphatase activity in differentiating pre-osteoblasts. Rebamipide weakly stimulates proliferation in macrophages at low concentrations (118 +/- 7.4% at 1uM), and quenches ROS by 40-60%. This is the first investigation of Rebamipide in osteoblasts
    corecore