419 research outputs found

    Three-dimensional HepaRG spheroids as a liver model to study human genotoxicity in vitro with the single cell gel electrophoresis assay

    Get PDF
    International audienceMany efforts have been made in the last 30 years to develop more relevant in vitro models to study genotoxic responses of drugs and environmental contaminants. While 2D HepaRG cells are one of the most promising models for liver toxicology, a switch to 3D cultures that integrate both in vivo architecture and cell-cell interactions has occurred to achieve even more predictive models. preliminary studies have indicated that 3D HepaRG cells are suitable for liver toxicity screening. Our study aimed to evaluate the response of HepaRG spheroids exposed to various genotoxic compounds using the single cell gel electrophoresis assay. HepaRG spheroids were used at 10 days after seeding and exposed for 24 and 48 hours to certain selected chemical compounds (methylmethansulfonate (MMS), etoposide, benzo[a]pyrene (B[a]P), cyclophosphamide (CPA), 7,12-dimethylbenz[a]anthracene (DMBA), 2-acetylaminofluorene (2-AAF), 4-nitroquinoline (4-NQO), 2-amino-1-methyl-6-phenylimidazo[4,5-b] pyridine (PhIP), 2-amino-3-methylimidazo[4,5-f]quinolone (IQ), acrylamide, and 2-4-diaminotoluene (2,4-DAT)). After treatment, the comet assay was performed on single cell suspensions and cytotoxicity was determined by the ATP assay. Comet formation was observed for all compounds except IQ, etoposide and 2,4-DAT. Treatment of spheroids with rifampicin increased CYP3A4 activity, demonstrating the metabolic capacity of HepaRG spheroids. These data on genotoxicity in 3D HepaRG spheroids are promising, but further experiments are required to prove that this model can improve the predictivity of in vitro models to detect human carcinogens

    Survey of Water Bugs in Bankim, a New Buruli Ulcer Endemic Area in Cameroon

    Get PDF
    Buruli ulcer is a debitliating human skin disease with an unknown transmission mode although epidemiological data link it with swampy areas. Data available suggest that aquatic insects play a role in the dissemination and/or transmission of this disease. However, their biodiversity and biology remain poorly documented. We conducted an entomological survey in Bankim, Cameroon, an area recently described as endemic for Buruli ulcer in order to identify the commonly occurring aquatic bugs and document their relative abundance, diversity, and spatial distribution. Collection of aquatic bugs was realized over a period of one month by daily direct capture in different aquatic environments (streams, ponds, and rivers) and through light traps at night. Globally, the data obtained showed the presence of five families (Belostomatidae, Naucoridae, Nepidae, Notonectidae, and Gerridae), their abundance, distribution and diversity varying according to the type of aquatic environments and light attraction

    Therapeutic paracetamol treatment in older persons induces dietary and metabolic modifications related to sulfur amino acids

    Get PDF
    Sulfur amino acids are determinant for the detoxification of paracetamol (N-acetyl-p-aminophenol) through sulfate and glutathione conjugations. Long-term paracetamol treatment is common in the elderly, despite a potential cysteine/glutathione deficiency. Detoxification could occur at the expense of anti-oxidative defenses and whole body protein stores in elderly. We tested how older persons satisfy the extra demand in sulfur amino acids induced by long-term paracetamol treatment, focusing on metabolic and nutritional aspects. Effects of 3 g/day paracetamol for 14 days on fasting blood glutathione, plasma amino acids and sulfate, urinary paracetamol metabolites, and urinary metabolomic were studied in independently living older persons (five women, five men, mean (+/- SEM) age 74 +/- 1 years). Dietary intakes were recorded before and at the end of the treatment and ingested sulfur amino acids were evaluated. Fasting blood glutathione, plasma amino acids, and sulfate were unchanged. Urinary nitrogen excretion supported a preservation of whole body proteins, but large-scale urinary metabolomic analysis revealed an oxidation of some sulfur-containing compounds. Dietary protein intake was 13% higher at the end than before paracetamol treatment. Final sulfur amino acid intake reached 37 mg/kg/day. The increase in sulfur amino acid intake corresponded to half of the sulfur excreted in urinary paracetamol conjugates. In conclusion, older persons accommodated to long-term paracetamol treatment by increasing dietary protein intake without any mobilization of body proteins, but with decreased anti-oxidative defenses. The extra demand in sulfur amino acids led to a consumption far above the corresponding population-safe recommendation

    Investigation of Prolactin Receptor Activation and Blockade Using Time-Resolved Fluorescence Resonance Energy Transfer

    Get PDF
    The prolactin receptor (PRLR) is emerging as a therapeutic target in oncology. Knowledge-based drug design led to the development of a pure PRLR antagonist (Del1-9-G129R-hPRL) that was recently shown to prevent PRL-induced mouse prostate tumorogenesis. In humans, the first gain-of-function mutation of the PRLR (PRLRI146L) was recently identified in breast tumor patients. At the molecular level, the actual mechanism of action of these two novel players in the PRL system remains elusive. In this study, we addressed whether constitutive PRLR activation (PRLRI146L) or PRLR blockade (antagonist) involved alteration of receptor oligomerization and/or of inter-chain distances compared to unstimulated and PRL-stimulated PRLR. Using a combination of various biochemical and spectroscopic approaches (co-IP, blue native electrophoresis, BRET1), we demonstrated that preformed PRLR homodimers are altered neither by PRL- or I146L-induced receptor triggering, nor by antagonist-mediated blockade. These findings were confirmed using a novel time-resolved fluorescence resonance energy transfer (TR-FRET) technology that allows monitoring distance changes between cell surface tagged receptors. This technology revealed that PRLR blockade or activation did not involve detectable distance changes between extracellular domains of receptor chains within the dimer. This study merges with our previous structural investigations suggesting that the mechanism of PRLR activation solely involves intermolecular contact adaptations leading to subtle intramolecular rearrangements

    First Detection of Mycobacterium ulcerans DNA in Environmental Samples from South America

    Get PDF
    The occurrences of many environmentally-persistent and zoonotic infections are driven by ecosystem changes, which in turn are underpinned by land-use modifications that alter the governance of pathogen, biodiversity and human interactions. Our current understanding of these ecological changes on disease emergence however remains limited. Buruli ulcer is an emerging human skin disease caused by the mycobacterium, Mycobacterium ulcerans, for which the exact route of infection remains unclear. It can have a devastating impact on its human host, causing extensive necrosis of the skin and underlying tissue, often leading to permanent disability. The mycobacterium is associated with tropical aquatic environments and incidences of the disease are significantly higher on floodplains and where there is an increase of human aquatic activities. Although the disease has been previously diagnosed in South America, until now the presence of M. ulcerans DNA in the wild has only been identified in Australia where there have been significant outbreaks and in western and central regions of Africa where the disease is persistent. Here for the first time, we have identified the presence of the aetiological agent's DNA in environmental samples from South America. The DNA was positively identified using Real-time Polymerase Chain Reaction (PCR) on 163 environmental samples, taken from 23 freshwater bodies in French Guiana (Southern America), using primers for both IS2404 and for the ketoreductase-B domain of the M. ulcerans mycolactone polyketide synthase genes (KR). Five samples out of 163 were positive for both primers from three different water bodies. A further nine sites had low levels of IS2404 close to a standard CT of 35 and could potentially harbour M. ulcerans. The majority of our positive samples (8/14) came from filtered water. These results also reveal the Sinnamary River as a potential source of infection to humans. © 2014 Morris et al
    corecore