10 research outputs found

    Management during the dry period and its effect on hepatic and adipose tissue molecular biomarkers of metabolism and health in grazing dairy cows

    Get PDF
    A successful transition into lactation determines optimum production, reproduction, and health. The peripartum period is characterized by an inflammatory state that, if not controlled, could be detrimental to the cow. The first experiment examined hepatic and adipose gene expression in response to injections of a non-steroidal anti-inflammatory compound (Carprofen) on 1, 3, and 5 d postpartum. Results indicated that after calving both tissues respond to inflammation signals, underscoring its role in the normal homeorhetic adaptations to lactation. The second experiment investigated the effect of prepartal nutrition and its interaction with BCS on hepatic and adipose tissue transcriptome, and the liver one-carbon metabolism and transulfuration pathway. Cows were randomly allocated to one of four groups in a 2 × 2 factorial arrangement: 4.0 or 5.0 BCS prepartum (10-point scale) and dietary energy at 75 or 125% of estimated requirements during the close-up. Tissue biopsies were harvested at -1, 1 and 4 wk relative to parturition. The greater number of hepatic differentially expressed genes in BCS4 cows in response to increased prepartum feed allowance (1071 vs 310, over the entire transition period) indicated a greater responsiveness to prepartum nutrition than optimally-conditioned cows. Thus, overfeeding in late-pregnancy should be limited to underconditioned cows, while cows with optimal BCS should be maintained on an energy-restricted diet. Adipose tissue mRNA and microRNA expression further confirmed this hypothesis, and indicated a relationship between the immune and metabolic response of the adipose tissue underscoring the existence of a “self-regulatory” mechanism. The extensive analysis of the hepatic one-carbon metabolism and related pathways highlighted fundamental differences in the metabolic progression of grazing cows compared to their higher-yield counterpart in TMR-based systems. Results also indicated a greater flux through these pathways in optimally conditioned cows feed restricted prepartum. The third experiment examined the effect of over-feeding in both close-up and far-off periods on the adipose tissue transcriptome. Far-off over-feeding is usually a standard practice in seasonal grazing systems as, compared with TMR-fed cows, cows are thinner at the end of lactation. Adipose expression data revealed how overfed cows in the far-off period had greater adipogenesis, consistent with their rapid gain in BCS following dry-off, but a lower body fat mobilization in early lactation. The results indicated that neither strategy negatively affected the adaptations to lactation. However, to ensure a favorable transition, cows should be subjected to a small feed restriction in the close-up period, irrespective of far-off nutrition. Overall, results indicated a beneficial involvement of the immune system in the adaptation to lactation, and the possibility to regulate this process through prepartal BCS and nutrition management. As a result of the three studies, New Zealand farmers, through DairyNZ (the industry organization that represents all New Zealand dairy producers), are now discouraged to apply prophylactic pharmacological intervention early postpartum, in favour of nutritional management during the dry period. Our recommendation is for cows to be properly managed in late lactation and early dry period to attain optimal condition (e.g, BCS 5) by close-up (3 wks from calving). Subsequently cows will benefit from a controlled feed restriction (75–90% of requirements). On the other hand, cows in less than optimal condition (e.g. BCS ≀ 4) should be fed to requirements or slightly overfed (110-120% of requirements) before calving. This is an easily implementable strategy based on pasture allocation capable of benefitting the farmer with a minimum cost

    Methionine and Choline Supply during the Periparturient Period Alter Plasma Amino Acid and One-Carbon Metabolism Profiles to Various Extents: Potential Role in Hepatic Metabolism and Antioxidant Status

    No full text
    The objective of this study was to profile plasma amino acids (AA) and derivatives of their metabolism during the periparturient period in response to supplemental rumen-protected methionine (MET) or rumen-protected choline (CHOL). Forty cows were fed from −21 through 30 days around parturition in a 2 × 2 factorial design a diet containing MET or CHOL. MET supply led to greater circulating methionine and proportion of methionine in the essential AA pool, total AA, and total sulfur-containing compounds. Lysine in total AA also was greater in these cows, indicating a better overall AA profile. Sulfur-containing compounds (cystathionine, cystine, homocystine, and taurine) were greater in MET-fed cows, indicating an enriched sulfur-containing compound pool due to enhanced transsulfuration activity. Circulating essential AA and total AA concentrations were greater in cows supplied MET due to greater lysine, arginine, tryptophan, threonine, proline, asparagine, alanine, and citrulline. In contrast, CHOL supply had no effect on essential AA or total AA, and only tryptophan and cystine were greater. Plasma 3-methylhistidine concentration was lower in response to CHOL supply, suggesting less tissue protein mobilization in these cows. Overall, the data revealed that enhanced periparturient supply of MET has positive effects on plasma AA profiles and overall antioxidant status

    Application of nutrigenomics in small ruminants: Lactation, growth, and beyond

    No full text
    Ruminants have a very special niche in the animal kingdom, and are the most important livestock species providing milk, meat, and wool for humans from consumption of highly-fibrous feedstuffs. Cattle, goat and sheep have been widely-used for years as models to study ruminal fermentation and the mechanisms whereby tissues utilize nutrients for milk synthesis, growth, wool accretion, and reproduction. The advent of high-throughput technologies to study an animal's genome, proteome, and metabolome (i.e., “omics” tools) offered ruminant scientists the opportunity to study multiple levels of biological information to better understand the whole animal response to nutrition, environment, physiological state, and their interactions. The omics revolution gave rise to the field of nutrigenomics, i.e. the study of the genome-wide influences of nutrition through alteration in mRNA, protein, and metabolite expression or abundance. This field of research is relatively new in ruminants, and particularly sheep and goats. Dietary compounds affect gene expression directly or indirectly via interactions with transcription factors including ligand-dependent nuclear receptors. New knowledge generated through the application of functional analyses of transcriptomic, proteomic, and metabolomic data sets in goat and sheep is discussed.Fil: Osorio, Johan S.. South Dakota State University; Estados UnidosFil: Vailati Riboni, Mario. University of Illinois at Urbana; Estados UnidosFil: Palladino, Rafael Alejandro. Universidad de Buenos Aires. Facultad de AgronomĂ­a; Argentina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas; ArgentinaFil: Luo, Jun. Northwest A&F University; ChinaFil: Loor, Juan J.. University of Illinois at Urbana; Estados Unido

    Additional file 1: of Supplemental Smartamine M in higher-energy diets during the prepartal period improves hepatic biomarkers of health and oxidative status in Holstein cows

    No full text
    Complete gene expression methodology, including primer sequences and qPCR performance. Figures S1-S5 include the two-way interaction graphs not shown in the manuscript. (DOCX 8109 kb

    Supplemental Smartamine M in higher-energy diets during the prepartal period improves hepatic biomarkers of health and oxidative status in Holstein cows

    Get PDF
    Background: Feeding higher-energy prepartum is a common practice in the dairy industry. However, recent data underscore how it could reduce performance, deepen negative energy balance, and augment inflammation and oxidative stress in fresh cows. We tested the effectiveness of rumen-protected methionine in preventing the negative effect of feeding a higher-energy prepartum. Multiparous Holstein cows were fed a control lower-energy diet (CON, 1.24 Mcal/kg DM; high-straw) during the whole dry period (~50 d), or were switched to a higher-energy (OVE, 1.54 Mcal/kg DM), or OVE plus Smartamine M (OVE + SM; Adisseo NA) during the last 21 d before calving. Afterwards cows received the same lactation diet (1.75 Mcal/kg DM). Smartamine M was top-dressed on the OVE diet (0.07% of DM) from -21 through 30 d in milk (DIM). Liver samples were obtained via percutaneous biopsy at -10, 7 and 21 DIM. Expression of genes associated with energy and lipid metabolism, hepatokines, methionine cycle, antioxidant capacity and inflammation was measured. Results: Postpartal dry matter intake, milk yield, and energy-corrected milk were higher in CON and OVE + SM compared with OVE. Furthermore, milk protein and fat percentages were greater in OVE + SM compared with CON and OVE. Expression of the gluconeogenic gene PCK1 and the lipid-metabolism transcription regulator PPARA was again greater with CON and OVE + SM compared with OVE. Expression of the lipoprotein synthesis enzyme MTTP was lower in OVE + SM than CON or OVE. Similarly, the hepatokine FGF21, which correlates with severity of negative energy balance, was increased postpartum only in OVE compared to the other two groups. These results indicate greater liver metabolism and functions to support a greater production in OVE + SM. At 7 DIM, the enzyme GSR involved in the synthesis of glutathione tended to be upregulated in OVE than CON-fed cows, suggesting a greater antioxidant demand in overfed cows. Feeding OVE + SM resulted in lower similar expression of GSR compared with CON. Expression of the methionine cycle enzymes SAHH and MTR, both of which help synthesize methionine endogenously, was greater prepartum in OVE + SM compared with both CON and OVE, and at 7 DIM for CON and OVE + SM compared with OVE, suggesting greater Met availability. It is noteworthy that DNMT3A, which utilizes S-adenosylmethionine generated in the methionine cycle, was greater in OVE and OVE + SM indicating higher-energy diets might enhance DNA methylation, thus, Met utilization. Conclusions: Data indicate that supplemental Smartamine M was able to compensate for the negative effect of prepartal energy-overfeeding by alleviating the demand for intracellular antioxidants, thus, contributing to the increase in production. Moreover Smartamine M improved hepatic lipid and glucose metabolism, leading to greater liver function and better overall health

    Additional file 1: of Expression of fatty acid sensing G-protein coupled receptors in peripartal Holstein cows

    No full text
    Table S1. Forward and reverse primer information for genes of interest. Table S2. PCR product sequences obtained using primers listed in Table 2. Table S3. qPCR performance of GPR40, GPR120, GPR84, and HCAR2/3 in adipose, liver, and polymorphonuclear leukocytes (PMNL). (DOCX 16 kb
    corecore