10 research outputs found

    The interactions of Cobalt(II) with mitochondria from rat liver

    Get PDF
    The interactions of Co2+ with mitochondria have been investigated. The results indicate that Co2+ inhibits ATP synthesis. Further investigations into ATP synthesis mechanisms indicated that inhibition is due to the opening of a transmembrane pore. The opening of this pore causes the collapse of the high-energy intermediate where, under a pH and a potential gradient, the energy is stored and subsequently utilized to form ATP from ADP

    The effects of methylglyoxal-bis(guanylhydrazone) on spermine binding and transport in liver mitochondria.

    No full text
    This study evaluated the effect of the anticancer drug methylglyoxal-bis( guanylhydrazone) (MGBG) on the binding of the polyamine spermine to the mitochondrial membrane and its transport into the inner compartment of this organelle. Spermine binding was studied by applying a new thermodynamic treatment of ligand-receptor interactions (Di Note et al., Macromol Theory Simul 5: 165-181, 1996). Results showed that MGBG inhibited the binding of spermine to the site competent for the first step in polyamine transport; the interaction of spermine with this site, termed S-1, also mediates the inhibitory effect of the polyamine on the mitochondrial permeability transition (Dalla Via et al., Biochim Biophys Acta 1284: 247-252, 1996). In the presence of 1 mM MGBG, the binding capacity and affinity of this site were reduced by about 2.6-fold; on the contrary, the binding capacity of the S-2 site, which is most likely responsible for the internalization of cytoplasmic proteins (see Dalla Via et ai., reference cited above), increased by about 1.3-fold, and its binding affinity remained unaffected. MGBG also inhibited the initial rate of spermine transport in a dose-dependent manner by establishing apparently sigmoidal kinetics. Consequently, the total extent of spermine accumulation inside mitochondria was inhibited. This inhibition in transport seems to reflect a conformational change at the level of the channel protein constituting the polyamine transport system, rather than competitive inhibition at the inner active site of the channel, thereby excluding the possibility that the polyamine and drug use the same transport pathway. Furthermore, it is suggested that, in the presence of MGBG, the S-2 site is able to participate in residual spermine transport. MGBG also strongly inhibits Delta pH-dependent spermine efflux, resulting in a complete block in the bidirectional flux of the polyamine and its sequestration inside the matrix space. The effects of MGBG on spermine accumulation are consistent with in vivo disruption of the regulator of energy metabolism and replication of the mitochondrial genome

    Aluminum as an inducer of the mitochondrial permeability transition

    No full text

    Lyn-mediated mitochondrial tyrosine phosphorylation is required to preserve mitochondrial integrity in early liver regeneration

    No full text
    Functional alterations in mitochondria such as overproduction of ROS (reactive oxygen species) and overloading of calcium, with subsequent change in the membrane potential, are traditionally regarded as pro-apoptotic conditions. Although such events occur in the early phases of LR (liver regeneration) after two-thirds PH (partial hepatectomy), hepatocytes do not undergo apoptosis but continue to proliferate until the mass of the liver is restored. The aim of the present study was to establish whether tyrosine phosphorylation, an emerging mechanism of regulation of mitochondrial function, participates in the response to liver injury following PH and is involved in contrasting mitochondrial pro-apoptotic signalling. Mitochondrial tyrosine phosphorylation, negligible in the quiescent liver, was detected in the early phases of LR with a trend similar to the events heralding mitochondrial apoptosis and was attributed to the tyrosine kinase Lyn, a member of the Src family. Lyn was shown to accumulate in an active form in the mitochondrial intermembrane space, where it was found to be associated with a multiprotein complex. Our results highlight a role for tyrosine phosphorylation in accompanying, and ultimately counteracting, mitochondrial events otherwise leading to apoptosis, hence conveying information required to preserve the mitochondrial integrity during LR

    Agmatine is transported into liver mitochondria by a specific electrophoretic mechanism

    Get PDF
    Agmatine, a divalent diamine with two positive charges at physiological pH, is transported into the matrix of liver mitochondria by an energy-dependent mechanism the driving force of which is ΔΨ (electrical membrane potential). Although this process showed strict electrophoretic behaviour, qualitatively similar to that of polyamines, agmatine is most probably transported by a specific uniporter. Shared transport with polyamines by means of their transporter is excluded, as divalent putrescine and cadaverine are ineffective in inhibiting agmatine uptake. Indeed, the use of the electroneutral transporter of basic amino acids can also be discarded as ornithine, arginine and lysine are completely ineffective at inducing the inhibition of agmatine uptake. The involvement of the monoamine transporter or the existence of a leak pathway are also unlikely. Flux-voltage analysis and the determination of activation enthalpy, which is dependent upon the valence of agmatine, are consistent with the hypothesis that the mitochondrial agmatine transporter is a channel or a single-binding centre-gated pore. The transport of agmatine was non-competitively inhibited by propargylamines, in particular clorgilyne, that are known to be inhibitors of MAO (monoamine oxidase). However, agmatine is normally transported in mitoplasts, thus excluding the involvement of MAO in this process. The I(2) imidazoline receptor, which binds agmatine to the mitochondrial membrane, can also be excluded as a possible transporter since its inhibitor, idazoxan, was ineffective at inducing the inhibition of agmatine uptake. Scatchard analysis of membrane binding revealed two types of binding site, S(1) and S(2), both with mono-co-ordination, and exhibiting high-capacity and low-affinity binding for agmatine compared with polyamines. Agmatine transport in liver mitochondria may be of physiological importance as an indirect regulatory system of cytochrome c oxidase activity and as an inducer mechanism of mitochondrial-mediated apoptosis

    Structure, Immunoreactivity, and In Silico Epitope Determination of SmSPI S. mansoni Serpin for Immunodiagnostic Application

    No full text
    The human parasitic disease Schistosomiasis is caused by the Schistosoma trematode flatworm that infects freshwaters in tropical regions of the world, particularly in Sub-Saharan Africa, South America, and the Far-East. It has also been observed as an emerging disease in Europe, due to increased immigration. In addition to improved therapeutic strategies, it is imperative to develop novel, rapid, and sensitive diagnostic tests that can detect the Schistosoma parasite, allowing timely treatment. Present diagnosis is difficult and involves microscopy-based detection of Schistosoma eggs in the feces. In this context, we present the 3.22 Ă… resolution crystal structure of the circulating antigen Serine protease inhibitor from S. mansoni (SmSPI), and we describe it as a potential serodiagnostic marker. Moreover, we identify three potential immunoreactive epitopes using in silico-based epitope mapping methods. Here, we confirm effective immune sera reactivity of the recombinant antigen, suggesting the further investigation of the protein and/or its predicted epitopes as serodiagnostic Schistosomiasis biomarkers

    Structure, Immunoreactivity, and In Silico Epitope Determination of SmSPI S. mansoni Serpin for Immunodiagnostic Application

    No full text
    The human parasitic disease Schistosomiasis is caused by the Schistosoma trematode flatworm that infects freshwaters in tropical regions of the world, particularly in Sub-Saharan Africa, South America, and the Far-East. It has also been observed as an emerging disease in Europe, due to increased immigration. In addition to improved therapeutic strategies, it is imperative to develop novel, rapid, and sensitive diagnostic tests that can detect the Schistosoma parasite, allowing timely treatment. Present diagnosis is difficult and involves microscopy-based detection of Schistosoma eggs in the feces. In this context, we present the 3.22 angstrom resolution crystal structure of the circulating antigen Serine protease inhibitor from S. mansoni (SmSPI), and we describe it as a potential serodiagnostic marker. Moreover, we identify three potential immunoreactive epitopes using in silico-based epitope mapping methods. Here, we confirm effective immune sera reactivity of the recombinant antigen, suggesting the further investigation of the protein and/or its predicted epitopes as serodiagnostic Schistosomiasis biomarkers

    Elucidating the 3D Structure of a Surface Membrane Antigen from Trypanosoma cruzi as a Serodiagnostic Biomarker of Chagas Disease

    No full text
    Chagas disease (CD) is a vector-borne parasitosis, caused by the protozoan parasite Trypanosoma cruzi, that affects millions of people worldwide. Although endemic in South America, CD is emerging throughout the world due to climate change and increased immigratory flux of infected people to non-endemic regions. Containing of the diffusion of CD is challenged by the asymptomatic nature of the disease in early infection stages and by the lack of a rapid and effective diagnostic test. With the aim of designing new serodiagnostic molecules to be implemented in a microarray-based diagnostic set-up for early screening of CD, herein, we report the recombinant production of the extracellular domain of a surface membrane antigen from T. cruzi (TcSMP) and confirm its ability to detect plasma antibodies from infected patients. Moreover, we describe its high-resolution (1.62 angstrom) crystal structure, to which in silico epitope predictions were applied in order to locate the most immunoreactive regions of TcSMP in order to guide the design of epitopes that may be used as an alternative to the full-length antigen for CD diagnosis. Two putative, linear epitopes, belonging to the same immunogenic region, were synthesized as free peptides, and their immunological properties were tested in vitro. Although both peptides were shown to adopt a structural conformation that allowed their recognition by polyclonal antibodies raised against the recombinant protein, they were not serodiagnostic for T. cruzi infections. Nevertheless, they represent good starting points for further iterative structure-based (re)design cycles

    Hepatitis C virus RNA levels at week-2 of telaprevir/boceprevir administration are predictive of virological outcome

    Get PDF
    Background: Triple therapy with telaprevir/boceprevir + pegylated-interferon + ribavirin can achieve excellent antiviral efficacy, but it can be burdened with resistance development at failure. Aims: To evaluate kinetics of hepatitis C virus (HCV) RNA decay and early resistance development, in order to promptly identify patients at highest risk of failure to first generation protease inhibitors. Methods: HCV-RNA was prospectively quantified in 158 patients receiving pegylatedinterferon + ribavirin + telaprevir (N = 114) or + boceprevir (N = 44), at early time-points and during per protocol follow-up. Drug resistance was contextually evaluated by population sequencing. Results: HCV-RNA at week-2 was significantly higher in patients experiencing virological failure to triple-therapy than in patients with sustained viral response (2.3 [1.9–2.8] versus 1.2 [0.3–1.7] log IU/mL, p < 0.001). A 100 IU/mL cut-off value for week-2 HCV-RNA had the highest sensitivity (86%) in predicting virological success. Indeed, 23/23 (100%) patients with undetectable HCV-RNA reached success, versus 26/34 (76.5%) patients with HCV-RNA < 100 IU/mL, and only 11/31 (35.5%) with HCV-RNA > 100 IU/mL (p < 0.001). Furthermore, differently from failing patients, none of the patient with undetectable HCV-RNA at week-2 had baseline/early resistance. , Giuliano Rizzardinil, Mario Angelicob
    corecore