7,718 research outputs found

    The Nonlinear Optical Effects of Opening a Gap in Graphene

    Full text link
    Graphene possesses remarkable electronic, optical and mechanical properties that have taken the research of two-dimensional relativistic condensed matter systems to prolific levels. However, the understanding of how its nonlinear optical properties are affected by relativistic-like effects has been broadly uncharted. It has been recently shown that highly-nontrivial currents can be generated in free-standing samples, notably leading to the generation of even harmonics. Since graphene monolayers are centrosymmetric media, for which such harmonic generation is deemed inaccessible, this light-driven phenomenon is both startling and promising. More realistically, graphene samples are often deposited on a dielectric substrate, leading to additional intricate interactions. Here, we present a treatment to study this instance by gapping the spectrum and we show this leads to the appearance of a Berry phase in the carrier dynamics. We analyse the role of such a phase in the generated nonlinear current and conclude that it suppresses odd-harmonic generation. The pump energy can be tuned to the energy gap to yield interference among odd harmonics mediated by interband transitions, allowing even harmonics to be generated. Our results and general methodology pave the way for understanding the role of gap-opening physical factors in the nonlinear optics of hexagonal two-dimensional lattices.Comment: 5 figure

    Relative entropy minimizing noisy non-linear neural network to approximate stochastic processes

    Full text link
    A method is provided for designing and training noise-driven recurrent neural networks as models of stochastic processes. The method unifies and generalizes two known separate modeling approaches, Echo State Networks (ESN) and Linear Inverse Modeling (LIM), under the common principle of relative entropy minimization. The power of the new method is demonstrated on a stochastic approximation of the El Nino phenomenon studied in climate research

    First-Principle Description of Correlation Effects in Layered Materials

    Get PDF
    We present a first-principles description of anisotropic materials characterized by having both weak (dispersion-like) and strong covalent bonds, based on the Adiabatic--Connection Fluctuation--Dissipation Theorem within Density Functional Theory. For hexagonal boron nitride the in-plane and out of plane bonding as well as vibrational dynamics are well described both at equilibrium and when the layers are pulled apart. Also bonding in covalent and ionic solids is described. The formalism allows to ping-down the deficiencies of common exchange-correlation functionals and provides insight towards the inclusion of dispersion interactions into the correlation functional.Comment: Accepted for publication in Physical Review Letter

    Excitons in boron nitride nanotubes: dimensionality effects

    Get PDF
    We show that the optical absorption spectra of boron nitride (BN) nanotubes are dominated by strongly bound excitons. Our first-principles calculations indicate that the binding energy for the first and dominant excitonic peak depends sensitively on the dimensionality of the system, varying from 0.7 eV in bulk hexagonal BN via 2.1 eV in the single sheet of BN to more than 3 eV in the hypothetical (2,2) tube. The strongly localized nature of this exciton dictates the fast convergence of its binding energy with increasing tube diameter towards the sheet value. The absolute position of the first excitonic peak is almost independent of the tube radius and system dimensionality. This provides an explanation for the observed "optical gap" constancy for different tubes and bulk hBN [R. Arenal et al., to appear in Phys. Rev. Lett. (2005)].Comment: 5 pages, 2 figure

    Heat Capacity Mapping Mission (HCMM) program: Study of geological structure of Sicily and other Italian areas

    Get PDF
    The usefulness of thermal inertia mapping in discriminating geolithological units was investigated using Sardinia and the Gulf of Orosei as test sites. Software designed for LANDSAT data were modified and improved for HCMM tapes. A first attempt was made to compare the geological cross section, the topography, the IR radiance, and the thermal inertia along selected profiles of the test site. Thermal inertia profiles appear smoothed in comparison with the thermal radiance. The lowest apparent thermal inertia (ATI) was found on granitic and basaltic outcrops where their image is of sufficient extent, while ATI is higher on carbonatic and dolomitic or moist deposits. Almost every fault is marked by a jump of ATI, the interval being sometimes of the order of one pixel. This seems to demonstrate the ability of ATI to detect contacts or tectonically disturbed zones with a good resolution. It seems more difficult to measure the differences in ATI between homogeneous materials having different lithology. Ground surveys conducted and a simulation model of diurnal temperatures of rocks having different thermal inertia are discussed

    Toward the Standardization of the BVL_RU: An Instrument for Speech and Language Assessment of Russian-speaking Children

    Get PDF
    The Battery for the assessment of speech and language development in children from 4 to 12 years (BVL_4-12; [1]) was originally developed for Italian-speaking children and currently is under adaptation into several European languages including Russian. The BVL_4-12 consists of three parts and includes tasks assessing oral production, comprehension and repetition skills in children. This article describes the process of adaptation of the BVL_4-12 into Russia and focuses on the instructions’ translation and standardization. It presents the results of the tasks instructions’ clarity evaluation by an expert panel including Russian-speaking specialists constantly working with children of a target age in Russia and Italy (N = 7) and a cohort of children from 4.06 to10.10 including monolinguals with typical language development, children previously diagnosed with primary language impairment (PLI) and heritage Russian speakers (N = 84). Overall, 10 task instructions were judged as absolutely clear and 5 task instructions were somewhat unclear to some of the participants. Further analysis ofthe age of the participants who rated the instructions as ‘unclear’ was performed. Some of the youngest participants, whose age did not exceed 6.10, found that the instructions for the following tasks were not clear: phonological fluency; sentence completion; grammatical judgments; idiom comprehension, and comprehension of linguistic prosody. However, the minimum inter-rater agreement among the sample was reached. The potential explanation of the results of the study is proposed in the Discussion section. Keywords: language assessment, Russian, children, SLI, task instruction
    corecore