14 research outputs found

    RESISTANCE OF TRYPANOSOMA-CRUZI TO BLOOD CLEARANCE INDUCED BY ACUTE-PHASE IMMUNE MOUSE SERUM

    No full text
    To investigate functional changes in Trypanosoma cruzi parasites induced during their interaction with the vertebrate host, we compared the blood clearance profiles of blood forms isolated from infected normal mice (Reg-Tc) or from infected mice immunodepressed after treatment with cyclophosphamide (Cy-Tc). Parasite blood numbers were measured at various time intervals in animals injected intravenously (i.v.) with 1-2 x 10(6) T. cruzi of either isolate. In the absence of added immune sera (spontaneous clearance), Reg-Tc and Cy-Tc were cleared from blood at similar rates. However, when acute immune mouse serum (Ac-IMS) was injected i.v. 2 min after inoculation of parasites, a significant proportion of Cy-Tc only was cleared from the blood an hour later, whereas Reg-Tc were not, their clearance profile being identical to that observed in mice injected with normal mouse serum. Cy-Tc susceptibility to Ac-IMS was not the result of a toxic effect of cyclophosphamide over T. cruzi as parasites recovered from animals immunodepressed by irradiation before infection were cleared similarly by acute serum. Contrary to Ac-IMS, chronic immune mouse serum induced similar rates of disappearance of Reg-Tc and Cy-Tc from blood. Our results suggest the occurrence of T. cruzi selection or modification during the acute phase, which leads to an increased parasite resistance to the clearance properties of acute-phase antibodies

    Ultrastructure of the lung in a murine model of malaria-associated acute lung injury/acute respiratory distress syndrome

    Get PDF
    BACKGROUND: The mechanisms through which infection with Plasmodium spp. result in lung disease are largely unknown. Recently a number of mouse models have been developed to research malaria-associated lung injury but no detailed ultrastructure studies of the disease in its terminal stages in a murine model have yet been published. The goal was to perform an ultrastructural analysis of the lungs of mice that died with malaria-associated acute lung injury/acute respiratory distress syndrome to better determine the relevancy of the murine models and investigate the mechanism of disease. METHODS: DBA/2 mice were infected with Plasmodium berghei strain ANKA. Mice had their lungs removed immediately after death, processed using standard methods and viewed by transmission electron microscopy (TEM). RESULTS: Infected red blood cell:endothelium contact, swollen endothelium with distended cytoplasmic extensions and thickening of endothelium basement membrane were observed. Septa were thick and filled with congested capillaries and leukocytes and the alveolar spaces contained blood cells, oedema and cell debris. CONCLUSION: Results show that the lung ultrastructure of P. berghei ANKA-infected mice has similar features to what has been described in post-mortem TEM studies of lungs from individuals infected with Plasmodium falciparum. These data support the use of murine models to study malaria-associated acute lung injury

    Spatial effects on the multiplicity of Plasmodium falciparum infections

    Get PDF
    As malaria is being pushed back on many frontiers and global case numbers are declining, accurate measurement and prediction of transmission becomes increasingly difficult. Low transmission settings are characterised by high levels of spatial heterogeneity, which stands in stark contrast to the widely used assumption of spatially homogeneous transmission used in mathematical transmission models for malaria. In the present study an individual-based mathematical malaria transmission model that incorporates multiple parasite clones, variable human exposure and duration of infection, limited mosquito flight distance and most importantly geographically heterogeneous human and mosquito population densities was used to illustrate the differences between homogeneous and heterogeneous transmission assumptions when aiming to predict surrogate indicators of transmission intensity such as population parasite prevalence or multiplicity of infection (MOI). In traditionally highly malaria endemic regions where most of the population harbours malaria parasites, humans are often infected with multiple parasite clones. However, studies have shown also in areas with low overall parasite prevalence, infection with multiple parasite clones is a common occurrence. Mathematical models assuming homogeneous transmission between humans and mosquitoes cannot explain these observations. Heterogeneity of transmission can arise from many factors including acquired immunity, body size and occupational exposure. In this study, we show that spatial heterogeneity has a profound effect on predictions of MOI and parasite prevalence. We illustrate, that models assuming homogeneous transmission underestimate average MOI in low transmission settings when compared to field data and that spatially heterogeneous models predict stable transmission at much lower overall parasite prevalence. Therefore it is very important that models used to guide malaria surveillance and control strategies in low transmission and elimination settings take into account the spatial features of the specific target area, including human and mosquito vector distribution

    Malaria in Pregnancy Interacts with and Alters the Angiogenic Profiles of the Placenta

    Get PDF
    Malaria in pregnancy remains a substantial public health problem in malaria-endemic areas with detrimental outcomes for both the mother and the foetus. The placental changes that lead to some of these detrimental outcomes have been studied, but the mechanisms that lead to these changes are still not fully elucidated. There is some indication that imbalances in cytokine cascades, complement activation and angiogenic dysregulation might be involved in the placental changes observed. Nevertheless, the majority of studies on malaria in pregnancy (MiP) have come from areas where malaria transmission is high and usually restricted to Plasmodium falciparum, the most pathogenic of the malaria parasite species. We conducted a cross-sectional study in Cruzeiro do Sul, Acre state, Brazil, an area of low transmission and where both P. vivax and P. falciparum circulate. We collected peripheral and placental blood and placental biopsies, at delivery from 137 primigravid women and measured levels of the angiogenic factors angiopoietin (Ang)-1, Ang-2, their receptor Tie-2, and several cytokines and chemokines. We measured 4 placental parameters (placental weight, syncytial knots, placental barrier thickness and mononuclear cells) and associated these with the levels of angiogenic factors and cytokines. In this study, MiP was not associated with severe outcomes. An increased ratio of peripheral Tie-2:Ang-1 was associated with the occurrence of MiP. Both Ang-1 and Ang-2 had similar magnitudes but inverse associations with placental barrier thickness. Malaria in pregnancy is an effect modifier of the association between Ang-1 and placental barrier thickness

    Protective immunity against Trypanosoma cruzi infection in a highly susceptible mouse strain after vaccination with genes encoding the amastigote surface protein-2 and trans-sialidase

    No full text
    Protective immunity against lethal infection is developed when BALB/c or C57BL/6 mice are immunized with plasmids containing genes from the protozoan parasite Trypanosoma cruzi. However, genetic vaccination of the highly susceptible mouse strain A/Sn promoted limited survival after challenge. This observation questioned whether this type of vaccination would be appropriate for highly susceptible individuals. Here, we compared the protective efficacy and the immune response after individual or combined genetic vaccination of A/Sn mice with genes encoding trans-sialidase (TS) or the amastigote surface protein-2 (ASP-2). After challenge, a significant proportion of A/Sn mice immunized with either the asp-2 gene or simultaneously with asp-2 and ts genes, survived infection. in contrast, the vast majority of mice immunized with the ts gene or the vector alone died. Parasitological and histological studies performed in the surviving mice revealed that these mice harbored parasites; however, minimal inflammatory responses were seen in heart and striated muscle. We used this model to search for an in vitro correlation for protection. We found that protective immunity correlated with a higher secretion of interferon-gamma by spleen cells on in vitro restimulation with ASP-2 and the presence of ASP-2-specific CD8 cells. Depletion of either CD4 or CD8 or both T-cell subpopulations prior to the challenge rendered the mice susceptible to infection demonstrating the critical contribution of both cell types in protective immunity. Our results reinforce the prophylactic potential of genetic vaccination with asp-2 and ts genes by describing protective immunity against lethal T. cruzi infection and chronic tissue pathology in a highly susceptible mouse strain.UNIFESP, Escola Paulista Med, CINTERGEN, BR-04044010 São Paulo, BrazilUniversidade Federal de São Paulo, Escola Paulista Med, Dept Microbiol Imunol & Parasitol, BR-04044010 São Paulo, BrazilUniv São Paulo, ICB, Dept Imunol, BR-05508900 São Paulo, BrazilUniv Fed Minas Gerais, Inst Ciencias Biol, Dept Bioquim & Imunol, BR-30190002 Belo Horizonte, MG, BrazilFiocruz MS, Ctr Pesquisas Rene Rachou, BR-30190002 Belo Horizonte, MG, BrazilUNIFESP, Escola Paulista Med, CINTERGEN, BR-04044010 São Paulo, BrazilUniversidade Federal de São Paulo, Escola Paulista Med, Dept Microbiol Imunol & Parasitol, BR-04044010 São Paulo, BrazilWeb of Scienc

    MyD88 Signaling Is Directly Involved in the Development of Murine Placental Malaria

    No full text
    Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Malaria is a widespread infectious disease caused by the parasite Plasmodium. During pregnancy, malaria infection leads to a range of complications that can affect both the mother and fetus, including stillbirth, infant mortality, and low birth weight. In this study, we utilized a mouse model of placental malaria (PM) infection to determine the importance of the protein MyD88 in the host immune response to Plasmodium during pregnancy. Initially, we demonstrated that Plasmodium berghei NK65GFP adhered to placental tissue via chondroitin sulfate A and induced PM in mice with a C57BL/6 genetic background. To evaluate the involvement of MyD88 in the pathology of PM, we performed a histopathological analysis of placentas obtained from MyD88(-/-) and wild-type (WT) mice following infection on the 19th gestational day. Our data demonstrated that the detrimental placental alterations observed in the infected mice were correlated with the expression of MyD88. Moreover, in the absence of this protein, production of interleukin 6 (IL-6) and tumor necrosis factor alpha (TNF-alpha) was significantly reduced in the infected mice. More importantly, in contrast to fetuses from infected WT mice, which exhibited a reduction in body weight, the fetuses from infected MyD88(-/-) mice did not display significant weight loss compared to their noninfected littermates. In addition, we observed a decrement of maternal care associated with malaria infection, which was attenuated in the MyD88-deficient mice. Collectively, the results of this study illustrate the pivotal importance of the MyD88 signaling pathway in the pathogenesis of placental malaria, thus presenting new possibilities for targeting MyD88 in therapeutic interventions.822830838Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)FAPESP [2009/53889-0, 2009/53256-7, 2011/17880-8, 2012/02270-2]CAPES [AUX-PE-PNPD 2751/2010, 258/2010]CNPq [475771/2009-5, 404213/2012

    Fucosylated Chondroitin Sulfate Inhibits Plasmodium falciparum Cytoadhesion and Merozoite Invasion

    No full text
    Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Sequestration of Plasmodium falciparum-infected erythrocytes (Pf-iEs) in the microvasculature of vital organs plays a key role in the pathogenesis of life-threatening malaria complications, such as cerebral malaria and malaria in pregnancy. This phenomenon is marked by the cytoadhesion of Pf-iEs to host receptors on the surfaces of endothelial cells, on noninfected erythrocytes, and in the placental trophoblast; therefore, these sites are potential targets for antiadhesion therapies. In this context, glycosaminoglycans (GAGs), including heparin, have shown the ability to inhibit Pf-iE cytoadherence and growth. Nevertheless, the use of heparin was discontinued due to serious side effects, such as bleeding. Other GAG-based therapies were hampered due to the potential risk of contamination with prions and viruses, as some GAGs are isolated from mammals. In this context, we investigated the effects and mechanism of action of fucosylated chondroitin sulfate (FucCS), a unique and highly sulfated GAG isolated from the sea cucumber, with respect to P. falciparum cytoadhesion and development. FucCS was effective in inhibiting the cytoadherence of Pf-iEs to human lung endothelial cells and placenta cryosections under static and flow conditions. Removal of the sulfated fucose branches of the FucCS structure virtually abolished the inhibitory effects of FucCS. Importantly, FucCS rapidly disrupted rosettes at high levels, and it was also able to block parasite development by interfering with merozoite invasion. Collectively, these findings highlight the potential of FucCS as a candidate for adjunct therapy against severe malaria.58418621871Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq
    corecore