170 research outputs found

    Unraveling biomarkers in Parkinson’s disease: the role of Insulin-like growth factor-1 (IGF-1) and DAT imaging

    Get PDF
    2015 - 2016Parkinson's disease (PD) is the second most common neurodegenerative disease after Alzheimer's disease, affecting up to 10 million individuals worldwide. Although symptomatic treatment ameliorates motor symptoms, currently there are no disease-modifying treatments. A biomarker is defined by the National Institutes of Health as “a characteristic that is objectively measured and evaluated as an indicator of normal biological processes, pathogenic processes or pharmacological responses to a therapeutic intervention”. Thus, biomarkers include clinical data, measurements of biological samples (e.g., plasma, serum, cerebrospinal fluid) and application of brain imaging techniques to detect changes in brain structure and function. As for PD, biomarkers represent tools potentially suitable for either clinical or research settings and useful in predicting onset, confirming diagnosis, detecting progression and evaluating the response to disease-modifying treatments. In addition, biomarkers’ trends in different stages of disease may reflect the widespread neurochemical and neuroanatomical changes that occur throughout the course of PD and, thus, possibly suggest new insights in the pathophysiological mechanisms underlying disease progression. The range of available biomarkers in PD is fast expanding and includes an increasing number of laboratory, clinical and imaging data. ... [edited by Author]XXIX cicl

    Biomarkers of Parkinson's disease: recent insights, current challenges, and future prospects

    Get PDF
    Marina Picillo,1 Marcello Moccia,2 Emanuele Spina,2 Paolo Barone,1 Maria Teresa Pellecchia1 1Department of Medicine and Surgery, Center for Neurodegenerative Diseases (CEMAND), Neuroscience Section, University of Salerno, Salerno, Italy; 2Department of Neuroscience, Reproductive and Odontostomatologic Sciences, Federico II University, Naples, Italy Abstract: A biomarker represents a tool possibly helping physicians in predicting onset, diagnosis, and progression of a disease as well as evaluating the response to disease-modifying treatments. Currently, there is no biomarker fulfilling all such ideal criteria for Parkinson's disease (PD). In this article, we have critically reviewed the literature searching for the most reliable and reproducible clinical, biochemical, and imaging biomarkers for prodromal phase, diagnosis, and progression of PD. Different comprehensive batteries of biomarkers have been proposed as a sensitive approach to predict the onset of PD during the prodromal phase. There is a discussion about the redefinition of the clinical diagnosis of PD, including clinical biomarkers as non-motor symptoms; however, on the other hand, we have also observed that imaging biomarkers support the differential diagnosis from other causes of parkinsonism. Various clinical (eg, freezing of gait or cognitive impairment), biochemical (eg, epidermal growth factor, insulin-like growth factor 1, uric acid, etc), and imaging (eg, functional magnetic resonance imaging, voxel-based morphometry, etc) biomarkers may help envisaging disease progression of PD. To conclude, given the lack of a single biomarker that could track the entire course of the disease, our challenge is to find the best combinations of biomarkers for the different stages of the disease. Keywords: biomarkers, Parkinson's disease, progression, motor, imaging , staging, non moto

    Gait Analysis in Progressive Supranuclear Palsy Phenotypes

    Get PDF
    The objective of the present study was to describe gait parameters of progressive supranuclear palsy (PSP) phenotypes at early stage verifying the ability of gait analysis in discriminating between disease phenotypes and between the other variant syndromes of PSP (vPSP) and Parkinson's disease (PD). Nineteen PSP (10 PSP-Richardson's syndrome, five PSP-parkinsonism, and four PSP-progressive gait freezing) and nine PD patients performed gait analysis in single and dual tasks. Although phenotypes showed similar demographic and clinical variables, Richardson's syndrome presented worse cognitive functions. Gait analysis demonstrated worse parameters in Richardson's syndrome compared with the vPSP. The overall diagnostic accuracy of the statistical model during dual task was almost 90%. The correlation analysis showed a significant relationship between gait parameters and visuo-spatial, praxic, and attention abilities in PSP-Richardson's syndrome only. vPSP presented worse gait parameters than PD. Richardson's syndrome presents greater gait dynamic instability since the earliest stages than other phenotypes. Computerized gait analysis can differentiate between PSP phenotypes and between vPSP and PD

    Targeted gene panel screening is an effective tool to identify undiagnosed late onset Pompe disease

    Get PDF
    Mutations in the GAA gene may cause a late onset Pompe disease presenting with proximal weakness without the characteristic muscle pathology, and therefore a test for GAA activity is the first tier analysis in all undiagnosed patients with hyperCKemia and/or limb-girdle muscular weakness. By using MotorPlex, a targeted gene panel for next generation sequencing, we analyzed GAA and other muscle diseasegenes in a large cohort of undiagnosed patients with suspected inherited skeletal muscle disorders (n = 504). In this cohort, 275 patients presented with limb-girdle phenotype and/or an isolated hyperCKemia. Mutational analysis identified GAA mutations in ten patients. Further seven affected relatives were identified by segregation studies. All the patients carried the common GAA mutation c.-32-13T > G and a second, previously reported mutation. In the subcohort of 275 patients with proximal muscle weakness and/or hyperCKemia, we identified late-onset Pompe disease in 10 patients. The clinical overlap between Pompe disease and LGMDs or other skeletal muscle disorders suggests that GAA and the genes causing a metabolic myopathy should be analyzed in all the gene panels used for testing neuromuscular patients. However, enzymatic tests are essential for the interpretation and validation of genetic results. (C) 2018 Elsevier B.V. All rights reserved.Peer reviewe

    Alteration of endosomal trafficking is associated with early-onset parkinsonism caused by SYNJ1 mutations

    Get PDF
    Recently, a new form of autosomal recessive early-onset parkinsonism (PARK20), due to mutations in the gene encoding the phosphoinositide phosphatase, Synaptojanin 1 (Synj1), has been reported. Several genes responsible for hereditary forms of Parkinson's disease are implicated in distinct steps of the endolysosomal pathway. However, the nature and the degree of endocytic membrane trafficking impairment in early-onset parkinsonism remains elusive. Here, we show that depletion of Synj1 causes drastic alterations of early endosomes, which become enlarged and more numerous, while it does not affect the morphology of late endosomes both in non-neuronal and neuronal cells. Moreover, Synj1 loss impairs the recycling of transferrin, while it does not alter the trafficking of the epidermal growth factor receptor. The ectopic expression of Synj1 restores the functions of early endosomes, and rescues these trafficking defects in depleted cells. Importantly, the same alterations of early endosomal compartments and trafficking defects occur in fibroblasts of PARK20 patients. Our data indicate that Synj1 plays a crucial role in regulating the homeostasis and functions of early endosomal compartments in different cell types, and highlight defective cellular pathways in PARK20. In addition, they strengthen the link between endosomal trafficking and Parkinson's disease

    PTPA variants and impaired PP2A activity in early-onset parkinsonism with intellectual disability

    Get PDF
    The protein phosphatase 2A complex (PP2A), the major Ser/Thr phosphatase in the brain, is involved in a number of signalling pathways and functions, including the regulation of crucial proteins for neurodegeneration, such as alpha-synuclein, tau and LRRK2. Here, we report the identification of variants in the PTPA/PPP2R4 gene, encoding a major PP2A activator, in two families with early-onset parkinsonism and intellectual disability. We carried out clinical studies and genetic analyses, including genome-wide linkage analysis, whole-exome sequencing, and Sanger sequencing of candidate variants. We next performed functional studies on the disease-associated variants in cultured cells and knock-down of ptpa in Drosophila melanogaster. We first identified a homozygous PTPA variant, c.893T&gt;G (p.Met298Arg), in patients from a South African family with early-onset parkinsonism and intellectual disability. Screening of a large series of additional families yielded a second homozygous variant, c.512C&gt;A (p.Ala171Asp), in a Libyan family with a similar phenotype. Both variants co-segregate with disease in the respective families. The affected subjects display juvenile-onset parkinsonism and intellectual disability. The motor symptoms were responsive to treatment with levodopa and deep brain stimulation of the subthalamic nucleus. In overexpression studies, both the PTPA p.Ala171Asp and p.Met298Arg variants were associated with decreased PTPA RNA stability and decreased PTPA protein levels; the p.Ala171Asp variant additionally displayed decreased PTPA protein stability. Crucially, expression of both variants was associated with decreased PP2A complex levels and impaired PP2A phosphatase activation. PTPA orthologue knock-down in Drosophila neurons induced a significant impairment of locomotion in the climbing test. This defect was age-dependent and fully reversed by L-DOPA treatment. We conclude that bi-allelic missense PTPA variants associated with impaired activation of the PP2A phosphatase cause autosomal recessive early-onset parkinsonism with intellectual disability. Our findings might also provide new insights for understanding the role of the PP2A complex in the pathogenesis of more common forms of neurodegeneration.</p

    Telethon Network of Genetic Biobanks: a key service for diagnosis and research on rare diseases

    Get PDF
    Several examples have always illustrated how access to large numbers of biospecimens and associated data plays a pivotal role in the identification of disease genes and the development of pharmaceuticals. Hence, allowing researchers to access to significant numbers of quality samples and data, genetic biobanks are a powerful tool in basic, translational and clinical research into rare diseases. Recently demand for well-annotated and properly-preserved specimens is growing at a high rate, and is expected to grow for years to come. The best effective solution to this issue is to enhance the potentialities of well-managed biobanks by building a network.Here we report a 5-year experience of the Telethon Network of Genetic Biobanks (TNGB), a non-profit association of Italian repositories created in 2008 to form a virtually unique catalogue of biospecimens and associated data, which presently lists more than 750 rare genetic defects. The process of TNGB harmonisation has been mainly achieved through the adoption of a unique, centrally coordinated, IT infrastructure, which has enabled (i) standardisation of all the TNGB procedures and activities; (ii) creation of an updated TNGB online catalogue, based on minimal data set and controlled terminologies; (iii) sample access policy managed via a shared request control panel at web portal. TNGB has been engaged in disseminating information on its services into both scientific/biomedical - national and international - contexts, as well as associations of patients and families. Indeed, during the last 5-years national and international scientists extensively used the TNGB with different purposes resulting in more than 250 scientific publications. In addition, since its inception the TNGB is an associated member of the Biobanking and Biomolecular Resources Research Infrastructure and recently joined the EuroBioBank network. Moreover, the involvement of patients and families, leading to the formalization of various agreements between TNGB and Patients' Associations, has demonstrated how promoting Biobank services can be instrumental in gaining a critical mass of samples essential for research, as well as, raising awareness, trust and interest of the general public in Biobanks. This article focuses on some fundamental aspects of networking and demonstrates how the translational research benefits from a sustained infrastructure
    • …
    corecore