456 research outputs found

    Industrial Engineering Higher Education in the European Area (EHEA)

    Get PDF
    [EN] Purpose: We present the state of the art of industrial engineering higher education in the European area and we describe the submitted works to the special issue ¿Rethinking Industrial Engineering Higher Education in the European Area (EHEA)¿. Design/methodology/approach: In this paper we collect the information published on industrial engineering higher education and the information provided by papers presented in the special issue. Findings: The methodologies and approaches performed by the people teaching. Research limitations/implications: Professors of the European area could take profit of the information provided in this paper. Practical implications: Other lecturers could use the information provided in this paper to know more teaching methodologies or to enhance their educational methods.Marin-Garcia, JA.; Lloret, J. (2011). Industrial Engineering Higher Education in the European Area (EHEA). Journal of Industrial Engineering and Management. 4(1):1-12. doi:10.3926/jiem.2011.v4n1.p1-12S1124

    Transcriptional diversification and functional conservation between DELLA proteins in Arabidopsis

    Full text link
    [EN] Plasticity and robustness of signaling pathways partly rely on genetic redundancy, although the precise mechanism that provides functional specificity to the different redundant elements in a given process is often unknown. In Arabidopsis, functional redundancy in gibberellin signaling has been largely attributed to the presence of five members of the DELLA family of transcriptional regulators. Here, we demonstrate that two evolutionarily and functionally divergent DELLA proteins, RGL2 and RGA, can perform exchangeable functions when they are expressed under control of the reciprocal promoter. Furthermore, both DELLA proteins display equivalent abilities to interact with PIF4 and with other bHLH transcription factors with a reported role in the control of cell growth and seed germination. Therefore, we propose that functional diversification of Arabidopsis DELLA proteins has largely relied on changes in their gene expression patterns rather than on their ability to interact with different regulatory partners, model also supported by a clustering analysis of DELLA transcript profiles over a range of organs and growth conditions that revealed specific patterns of expression for each of these genes.We deeply appreciate the help of Marta Trenor and Laura Garcia-Carcel in the initial stages of this work. We also thank Tai-ping Sun (Duke University) and the Arabidpsis Biological Resource Center for seeds, Marta Boter for the pGBKT7 and pGADT7 Gateway vectors, Santiago Elena (IBMCP, CSIC-UPV) for useful comments on the manuscript, and Francois Parcy (IRTSV, CNRS-CEA) for fruitful discussions and hosting MAB. Work in the authors' laboratories is funded by grants BIO2007-60923 and BIO2005-07284 from the Spanish Ministry of Science and Innovation. J.G.B. is the recipient of a CSIC I3P Fellowship and J.A.M. is the recipient of a Fellowship from the Fundacion "la Caixa.Gallego-Bartolome, J.; Minguet, E.; Marin, JA.; Prat, S.; Blazquez Rodriguez, MA.; Alabadí Diego, D. (2010). Transcriptional diversification and functional conservation between DELLA proteins in Arabidopsis. Molecular Biology and Evolution. 27(6):1247-1256. https://doi.org/10.1093/molbev/msq0121247125627

    Practical and accurate calculations of Askaryan radiation

    Full text link
    An in-depth characterization of coherent radio Cherenkov pulses from particle showers in dense dielectric media, referred to as the Askaryan effect, is presented. The time-domain calculation developed in this article is based on a form factor to account for the lateral dimensions of the shower. It is computationally efficient and able to reproduce the results of detailed particle shower simulations with high fidelity in most regions of practical interest including Fresnel effects due to the longitudinal development of the shower. In addition, an intuitive interpretation of the characteristics of the Askaryan pulse is provided. We expect our approach to benefit the analysis of radio pulses in experiments exploiting the radio technique.Comment: Replaced with version published Phys. Rev.

    Sex differences in mortality in patients with COPD

    Get PDF
    Little is known about survival and clinical prognostic factors in females with chronic obstructive pulmonary disease (COPD). The aim of the present study was to determine the survival difference between males and females with COPD and to compare the value of the different prognostic factors for the disease. In total, 265 females and 272 males with COPD matched at baseline by BODE (body mass index, airflow obstruction, dyspnoea, exercise capacity) and American Thoracic Society/European Respiratory Society/Global Initiative of Chronic Obstructive Lung Disease criteria were prospectively followed. Demographics, lung function, St George’s Respiratory Questionnaire, BODE index, the components of the BODE index and comorbidity were determined. Survival was documented and sex differences were determined using Kaplan–Meier analysis. The strength of the association of the studied variables with mortality was determined using multivariate and receiver operating curves analysis. All-cause (40 versus 18%) and respiratory mortality (24 versus 10%) were higher in males than females. Multivariate analysis identified the BODE index in females and the BODE index and Charlson comorbidity score in males as the best predictors of mortality. The area under the curve of the BODE index was a better predictor of mortality than the forced expiratory volume in one second for both sexes. At similar chronic obstructive pulmonary disease severity by BODE index and forced expiratory volume in one second, females have significantly better survival than males. For both sexes the BODE index is a better predictor of survival than the forced expiratory volume in one second

    Investigación en sistemas de trading, una propuesta para mejorar el desempeño de las AFOREs en México

    Get PDF
    El principal objetivo de un sistema de trading es maximizar sus beneficios utilizando señales y confirmaciones de tendencia que ayuden a mejorar el porcentaje de entradas y salidas apropiadas. En este proyecto, la fuente de estas señales proviene de un modelo de inteligencia artificial, específicamente una red neuronal multicapa. El entrenamiento del modelo utiliza datos diarios de contratos futuros continuos. Para mejorar el desempeño del sistema se tomó en cuenta un criterio de selección e importancia de variables con base a la estadística, así como una optimización de los hiper parámetros del modelo. Con el fin de disminuir la minusvalía de las posiciones abiertas, se propuso la implementación de una cobertura dinámica. Dicha cobertura se ejecutó con opciones para preservar el capital y gestionar el riesgo. El impacto de esta investigación se dirigió a contribuir e innovar el proceso de estrategias de inversión que realizan actualmente los fondos de pensión (AFORES) en México. Siendo el rendimiento un factor determinante para el retiro de futuras generaciones, y tomando en cuenta el contexto actual y recientes reformas en la materia, las estrategias de inversión apoyadas en tecnología se ha convertido en un área de suma importancia para nuestra sociedad.ITESO, A.C

    Measurement of the cosmic ray spectrum above 4×10184{\times}10^{18} eV using inclined events detected with the Pierre Auger Observatory

    Full text link
    A measurement of the cosmic-ray spectrum for energies exceeding 4×10184{\times}10^{18} eV is presented, which is based on the analysis of showers with zenith angles greater than 6060^{\circ} detected with the Pierre Auger Observatory between 1 January 2004 and 31 December 2013. The measured spectrum confirms a flux suppression at the highest energies. Above 5.3×10185.3{\times}10^{18} eV, the "ankle", the flux can be described by a power law EγE^{-\gamma} with index γ=2.70±0.02(stat)±0.1(sys)\gamma=2.70 \pm 0.02 \,\text{(stat)} \pm 0.1\,\text{(sys)} followed by a smooth suppression region. For the energy (EsE_\text{s}) at which the spectral flux has fallen to one-half of its extrapolated value in the absence of suppression, we find Es=(5.12±0.25(stat)1.2+1.0(sys))×1019E_\text{s}=(5.12\pm0.25\,\text{(stat)}^{+1.0}_{-1.2}\,\text{(sys)}){\times}10^{19} eV.Comment: Replaced with published version. Added journal reference and DO

    Energy Estimation of Cosmic Rays with the Engineering Radio Array of the Pierre Auger Observatory

    Full text link
    The Auger Engineering Radio Array (AERA) is part of the Pierre Auger Observatory and is used to detect the radio emission of cosmic-ray air showers. These observations are compared to the data of the surface detector stations of the Observatory, which provide well-calibrated information on the cosmic-ray energies and arrival directions. The response of the radio stations in the 30 to 80 MHz regime has been thoroughly calibrated to enable the reconstruction of the incoming electric field. For the latter, the energy deposit per area is determined from the radio pulses at each observer position and is interpolated using a two-dimensional function that takes into account signal asymmetries due to interference between the geomagnetic and charge-excess emission components. The spatial integral over the signal distribution gives a direct measurement of the energy transferred from the primary cosmic ray into radio emission in the AERA frequency range. We measure 15.8 MeV of radiation energy for a 1 EeV air shower arriving perpendicularly to the geomagnetic field. This radiation energy -- corrected for geometrical effects -- is used as a cosmic-ray energy estimator. Performing an absolute energy calibration against the surface-detector information, we observe that this radio-energy estimator scales quadratically with the cosmic-ray energy as expected for coherent emission. We find an energy resolution of the radio reconstruction of 22% for the data set and 17% for a high-quality subset containing only events with at least five radio stations with signal.Comment: Replaced with published version. Added journal reference and DO

    Measurement of the Radiation Energy in the Radio Signal of Extensive Air Showers as a Universal Estimator of Cosmic-Ray Energy

    Full text link
    We measure the energy emitted by extensive air showers in the form of radio emission in the frequency range from 30 to 80 MHz. Exploiting the accurate energy scale of the Pierre Auger Observatory, we obtain a radiation energy of 15.8 \pm 0.7 (stat) \pm 6.7 (sys) MeV for cosmic rays with an energy of 1 EeV arriving perpendicularly to a geomagnetic field of 0.24 G, scaling quadratically with the cosmic-ray energy. A comparison with predictions from state-of-the-art first-principle calculations shows agreement with our measurement. The radiation energy provides direct access to the calorimetric energy in the electromagnetic cascade of extensive air showers. Comparison with our result thus allows the direct calibration of any cosmic-ray radio detector against the well-established energy scale of the Pierre Auger Observatory.Comment: Replaced with published version. Added journal reference and DOI. Supplemental material in the ancillary file
    corecore