46 research outputs found

    La voie cGAS-STING

    No full text

    Le neutrophile : un agent infiltré aux nouvelles compétences antitumorales

    No full text
    Dans le cadre d’un partenariat avec médecine/sciences, cinq étudiants du module d’immunologie virologie et cancer du Master de cancérologie de Lyon présentent une analyse d’articles scientifiques récents faisant état d’observations innovantes et importantes

    Innate receptors for adaptive immunity

    Get PDF
    International audiencePattern recognition receptors (PRRs) are commonly known as sensor proteins crucial for the early detection of microbial or host-derived stress signals by innate immune cells. Interestingly, some PRRs are also expressed and functional in cells of the adaptive immune system. These receptors provide lymphocytes with innate sensing abilities; for example, B cells express Toll-like receptors, which are important for the humoral response. Strikingly, certain other NOD-like receptors are not only highly expressed in adaptive immune cells, but also exert functions related specifically to adaptive immune system pathways, such as regulating antigen presentation. In this review, we will focus particularly on the current understanding of PRR functions intrinsic to B and T lymphocytes; a developing aspect of PRR biology

    Emerging role of the unfolded protein response in tumor immunosurveillance

    No full text
    Disruption of endoplasmic reticulum (ER) homeostasis results in ER stress and activation of the unfolded protein response (UPR). This response alleviates cell stress, and is activated in both tumor cells and tumor infiltrating immune cells. The UPR plays a dual function in cancer biology, acting as a barrier to tumorigenesis at the premalignant stage, while fostering cancer maintenance in established tumors. In infiltrating immune cells, the UPR has been involved in both immunosurveillance and immunosuppressive functions. This review aims to decipher the role of the UPR at different stages of tumorigenesis and how the UPR shapes the balance between immunosurveillance and immune escape. This knowledge may improve existing UPR-targeted therapies and the design of novel strategies for cancer treatment

    ASC controls IFN-γ levels in an IL-18-dependent manner in caspase-1-deficient mice infected with Francisella novicida.

    No full text
    Remerciements ECOFECTInternational audienceThe inflammasome is a signaling platform that is central to the innate immune responses to bacterial infections. Francisella tularensis is a bacterium replicating within the host cytosol. During F. tularensis subspecies novicida infection, AIM2, an inflammasome receptor sensing cytosolic DNA, activates caspase-1 in an ASC-dependent manner, leading to both pyroptosis and release of the proinflammatory cytokines IL-1β and IL-18. Activation of this canonical inflammasome pathway is key to limit F. novicida infection. In this study, by comparing the immune responses of AIM2 knockout (KO), ASC(KO), and Casp1(KO) mice in response to F. novicida infection, we observed that IFN-γ levels in the serum of Casp1(KO) mice were much higher than the levels observed in AIM2(KO) and ASC(KO) mice. This difference in IFN-γ production was due to a large production of IFN-γ by NK cells in Casp1(KO) mice that was not observed in ASC(KO) mice. The deficit in IFN-γ production observed in ASC(KO) mice was not due to a reduced Dock2 expression or to an intrinsic defect of ASC(KO) NK cells. We demonstrate that in infected Casp1(KO) mice, IFN-γ production is due to an ASC-dependent caspase-1-independent pathway generating IL-18. Furthermore, we present in vitro data suggesting that the recently described AIM2/ASC/caspase-8 noncanonical pathway is responsible for the caspase-1-independent IL-18 releasing activity. To our knowledge, this study is the first in vivo evidence of an alternative pathway able to generate in a caspase-1-independent pathway bioactive IL-18 to boost the production of IFN-γ, a cytokine critical for the host antibacterial response

    Neutrophil Heterogeneity in Cancer : From Biology to Therapies

    No full text
    Neutrophils have been extensively described in the pathophysiology of autoimmune and infectious diseases. Accumulating evidence also suggests the important role of neutrophils in cancer progression through their interaction with cancer and immune cells in blood and in the tumor microenvironment (TME). Most studies have described neutrophils as key drivers of cancer progression, due to their involvement in various tumor promoting functions including proliferation, aggressiveness, and dissemination, as well as in immune suppression. However, such studies were focusing on late-stages of tumorigenesis, in which chronic inflammation had already developed. The role of tumor-associated neutrophils (TANs) at early stages of tumor development remains poorly described, though recent findings indicate that early-stage TANs may display anti-tumor properties. Beyond their role at tumor site, evidence supported by NLR retrospective studies and functional analyses suggest that blood neutrophils could also actively contribute to tumorigenesis. Hence, it appears that the phenotype and functions of neutrophils vary greatly during tumor progression, highlighting their heterogeneity. The origin of pro- or anti-tumor neutrophils is generally believed to arise following a change in cell state, from resting to activated. Moreover, the fate of neutrophils may also involve distinct differentiation programs yielding various subsets of pro or anti-tumor neutrophils. In this review, we will discuss the current knowledge on neutrophils heterogeneity across different tissues and their impact on tumorigenesis, as well as neutrophil-based therapeutic strategies that have shown promising results in pre-clinical studies, paving the way for the design of neutrophil-based next generation immunotherapy
    corecore