24 research outputs found

    Identification of a cell-wall channel in the corynemycolic acidfree gram-positive bacterium Corynebacterium amycolatum

    No full text
    As part of a comparative study of the cell wall of corynebacteria, a channel-forming protein was characterized in Corynebacterium amycolatum, a species devoid of corynemycolic acids. Corynebacterium amycolatum cells were disrupted and the cell envelope subjected to two different separation procedures, differential centrifugation to separate the different fractions of the cell envelope, and sucrose-step-gradient density centrifugation. The fractions obtained by the two methods were analyzed for lipid composition, NADH oxidase activity, and the formation of ion-permeable channels in lipid bilayers. High channel-forming activity was always detected in fractions expected to contain only cell-wall components. The highest NADH-oxidase activity was found in other fractions, indicating that the cell-wall fraction was distinct from the membrane fraction. The cell wall was found to contain an ion-permeable channel with a single-channel conductance of about 3.8 nS in 1 M KCl. The channel-forming protein, with an apparent molecular mass of 45 kDa, was purified to homogeneity using FPLC and preparative SDS-PAGE. Single-channel experiments suggested that the cell-wall channel is wide and water-filled and has a narrow selectivity for cations. Analysis of the fatty-acid composition of extractable lipids and delipidated cells suggested that the cell wall of C. amycolatum contains enough lipids to form an additional permeability barrier on the surface of the bacteria, thus accounting for the presence of the cell-wall channel. [Int Microbiol 2009; 12(1):29-38

    Serodiagnosis of Tuberculosis: Comparison of Immunoglobulin A (IgA) Response to Sulfolipid I with IgG and IgM Responses to 2,3-Diacyltrehalose, 2,3,6-Triacyltrehalose, and Cord Factor Antigens

    No full text
    Nonpeptidic antigens from the Mycobacterium tuberculosis cell wall are the focus of extensive studies to determine their potential role as protective antigens or serological markers of tuberculous disease. Regarding this latter role and using an enzyme-linked immunosorbent assay, we have made a comparative study of the immunoglobulin G (IgG), IgM, and IgA antibody responses to four trehalose-containing glycolipids purified from M. tuberculosis: diacyltrehaloses, triacyltrehaloses, cord factor, and sulfolipid I (SL-I). Sera from 92 tuberculosis patients (taken before starting antituberculosis treatment) and a wide group of control individuals (84 sera from healthy donors, including purified protein derivative-negative, -positive, healed, and vaccinated individuals, and 52 sera from nontuberculous pneumonia patients), all from Spain, were studied. The results indicated a significantly elevated IgG and IgA antibody response in tuberculosis patients, compared with controls, with all the antigens used. SL-I was the best antigen studied, showing test sensitivities and specificities for IgG of 81 and 77.6%, respectively, and of 66 and 87.5% for IgA. Using this antigen and combining IgA and IgG antibody detection, high test specificity was achieved (93.7%) with a sensitivity of 67.5%. Currently, it is widely accepted that it is not possible to achieve sensitivities above 80% in tuberculosis serodiagnosis when using one antigen alone. Thus, we conclude that SL-I, in combination with other antigenic molecules, could be a useful antigen for tuberculosis serodiagnosis

    Structure of the cell envelope of corynebacteria: importance of the non-covalently bound lipids in the formation of the cell wall permeability barrier and fracture plane

    No full text
    With the recent success of the heterologous expression of mycobacterial antigens in corynebacteria, in addition to the importance of these bacteria in biotechnology and medicine, a better understanding of the structure of their cell envelopes was needed. A combination of molecular compositional analysis, ultrastructural appearance and freeze-etch electron microscopy study was used to arrive at a chemical model, unique to corynebacteria but consistent with their phylogenetic relatedness to mycobacteria and other members of the distinctive suprageneric actinomycete taxon. Transmission electron microscopy and chemical analyses showed that the cell envelopes of the representative strains of corynebacteria examined consisted of (i) an outer layer composed of polysaccharides (primarily a high-molecular-mass glucan and arabinomannans), proteins, which include the mycoloyltransferase PS1, and lipids; (ii) a cell wall glycan core of peptidoglycan-arabinogalactan which may contain other sugar residues and was usually esterified by corynomycolic acids; and (iii) a typical plasma membrane bilayer. Freeze-etch electron microscopy showed that most corynomycolate-containing strains exhibited a main fracture plane in their cell wall and contained low-molecular-mass porins, while the fracture occurred within the plasma membrane of strains devoid of both corynomycolate and pore-forming proteins. Importantly, in most strains, the amount of cell wall-linked corynomycolates was not sufficient to cover the bacterial surface; interestingly, the occurrence of a cell wall fracture plane correlated with the amount of non-covalently bound lipids of the strains. Furthermore, these lipids were shown to spontaneously form liposomes, indicating that they may participate in a bilayer structure. Altogether, the data suggested that the cell wall permeability barrier in corynebacteria involved both covalently linked corynomycolates and non-covalently bound lipids of their cell envelopes

    Structure of the cell envelope of corynebacteria: importance of the non-covalently bound lipids in the formation of the cell wall permeability barrier and fracture plane

    No full text
    International audienceWith the recent success of the heterologous expression of mycobacterial antigens in corynebacteria, in addition to the importance of these bacteria in biotechnology and medicine, a better understanding of the structure of their cell envelopes was needed. A combination of molecular compositional analysis, ultrastructural appearance and freeze-etch electron microscopy study was used to arrive at a chemical model, unique to corynebacteria but consistent with their phylogenetic relatedness to mycobacteria and other members of the distinctive suprageneric actinomycete taxon. Transmission electron microscopy and chemical analyses showed that the cell envelopes of the representative strains of corynebacteria examined consisted of (i) an outer layer composed of polysaccharides (primarily a high-molecular-mass glucan and arabinomannans), proteins, which include the mycoloyltransferase PS1, and lipids; (ii) a cell wall glycan core of peptidoglycan-arabinogalactan which may contain other sugar residues and was usually esterified by corynomycolic acids; and (iii) a typical plasma membrane bilayer. Freeze-etch electron microscopy showed that most corynomycolate-containing strains exhibited a main fracture plane in their cell wall and contained low-molecular-mass porins, while the fracture occurred within the plasma membrane of strains devoid of both corynomycolate and pore-forming proteins. Importantly, in most strains, the amount of cell wall-linked corynomycolates was not sufficient to cover the bacterial surface; interestingly, the occurrence of a cell wall fracture plane correlated with the amount of non-covalently bound lipids of the strains. Furthermore, these lipids were shown to spontaneously form liposomes, indicating that they may participate in a bilayer structure. Altogether, the data suggested that the cell wall permeability barrier in corynebacteria involved both covalently linked corynomycolates and non-covalently bound lipids of their cell envelopes

    Impact of the epoxide hydrolase EphD on the metabolism of mycolic acids in mycobacteria

    Get PDF
    Mycolic acids are the hallmark of the cell envelope in mycobacteria, which include the important human pathogens and Mycolic acids are very long C60-C90 α-alkyl β-hydroxy fatty acids having a variety of functional groups on their hydrocarbon chain that define several mycolate types. Mycobacteria also produce an unusually large number of putative epoxide hydrolases, but the physiological functions of these enzymes are still unclear. Here, we report that the mycobacterial epoxide hydrolase EphD is involved in mycolic acid metabolism. We found that orthologs of EphD from and are functional epoxide hydrolases, cleaving a lipophilic substrate, 9,10--epoxystearic acid, and forming a vicinal diol. The results of EphD overproduction in and BCG Δ strains producing epoxymycolic acids indicated that EphD is involved in the metabolism of these forms of mycolates in both fast- and slow-growing mycobacteria. Moreover, using MALDI-TOF-MS and H NMR spectroscopy of mycolic acids and lipids isolated from EphD-overproducing , we identified new oxygenated mycolic acid species that accumulated during epoxymycolate depletion. Disruption of the gene in specifically impaired the synthesis of ketomycolates and caused accumulation of their precursor, hydroxymycolate, indicating either direct or indirect involvement of EphD in ketomycolate biosynthesis. Our results clearly indicate that EphD plays a role in metabolism of oxygenated mycolic acids in mycobacteria
    corecore