6 research outputs found

    A Type System for Privacy Properties (Technical Report)

    Full text link
    Mature push button tools have emerged for checking trace properties (e.g. secrecy or authentication) of security protocols. The case of indistinguishability-based privacy properties (e.g. ballot privacy or anonymity) is more complex and constitutes an active research topic with several recent propositions of techniques and tools. We explore a novel approach based on type systems and provide a (sound) type system for proving equivalence of protocols, for a bounded or an unbounded number of sessions. The resulting prototype implementation has been tested on various protocols of the literature. It provides a significant speed-up (by orders of magnitude) compared to tools for a bounded number of sessions and complements in terms of expressiveness other state-of-the-art tools, such as ProVerif and Tamarin: e.g., we show that our analysis technique is the first one to handle a faithful encoding of the Helios e-voting protocol in the context of an untrusted ballot box

    Increased Immunogenicity of Full-Length Protein Antigens through Sortase-Mediated Coupling on the PapMV Vaccine Platform

    No full text
    Background: Flexuous rod-shape nanoparticles—made of the coat protein of papaya mosaic virus (PapMV)—provide a promising vaccine platform for the presentation of viral antigens to immune cells. The PapMV nanoparticles can be combined with viral antigens or covalently linked to them. The coupling to PapMV was shown to improve the immune response triggered against peptide antigens (<39 amino acids) but it remains to be tested if large proteins can be coupled to this platform and if the coupling will lead to an immune response improvement. Methods: Two full-length recombinant viral proteins, the influenza nucleoprotein (NP) and the simian immunodeficiency virus group-specific protein antigen (GAG) were coupled to PapMV nanoparticles using sortase A. Mice were immunized with the nanoparticles coupled to the antigens and the immune response directed to the antigens were analyzed by ELISA and ELISPOT. Results: We showed the feasibility of coupling two different full-length proteins (GAG and NP) to the nanoparticle. We also showed that the coupling to PapMV nanoparticles improved significantly the humoral and the cytotoxic T lymphocyte (CTL) immune response to the antigens. Conclusion: This proof of concept demonstrates the versatility and the efficacy of the PapMV vaccine platform in the design of vaccines against viral diseases

    A versatile papaya mosaic virus (PapMV) vaccine platform based on sortase-mediated antigen coupling

    No full text
    Abstract Background Flexuous rod-shaped nanoparticles made of the coat protein (CP) of papaya mosaic virus (PapMV) have been shown to trigger innate immunity through engagement of toll-like receptor 7 (TLR7). PapMV nanoparticles can also serve as a vaccine platform as they can increase the immune response to fused peptide antigens. Although this approach shows great potential, fusion of antigens directly to the CP open reading frame (ORF) is challenging because the fused peptides can alter the structure of the CP and its capacity to self assemble into nanoparticles—a property essential for triggering an efficient immune response to the peptide. This represents a serious limitation to the utility of this approach as fusion of small peptides only is tolerated. Results We have developed a novel approach in which peptides are fused directly to pre-formed PapMV nanoparticles. This approach is based on the use of a bacterial transpeptidase (sortase A; SrtA) that can attach the peptide directly to the nanoparticle. An engineered PapMV CP harbouring the SrtA recognition motif allows efficient coupling. To refine our engineering, and to predict the efficacy of coupling with SrtA, we modeled the PapMV structure based on the known structure of PapMV CP and on recent reports revealing the structure of two closely related potexviruses: pepino mosaic virus (PepMV) and bamboo mosaic virus (BaMV). We show that SrtA can allow the attachment of long peptides [Influenza M2e peptide (26 amino acids) and the HIV-1 T20 peptide (39 amino acids)] to PapMV nanoparticles. Consistent with our PapMV structural model, we show that around 30% of PapMV CP subunits in each nanoparticle can be fused to the peptide antigen. As predicted, engineered nanoparticles were capable of inducing a strong antibody response to the fused antigen. Finally, in a challenge study with influenza virus, we show that mice vaccinated with PapMV-M2e are protected from infection. Conclusions This technology will allow the development of vaccines harbouring long peptides containing several B and/or T cell epitopes that can contribute to a broad and robust protection from infection. The design can be fast, versatile and can be adapted to the development of vaccines for many infectious diseases as well as cancer vaccines
    corecore