367 research outputs found
Impulsivity and Inhibitory Control Deficits Are Associated With Unhealthy Eating in Young Adults
Heightened impulsivity and inefficient inhibitory control are increasingly recognized as risk factors for unhealthy eating and obesity but the underlying processes are not fully understood. We used structural equation modeling to investigate the relationships between impulsivity, inhibitory control, eating behavior, and body mass index (BMI) in 210 undergraduates who ranged from underweight to obese. We demonstrate that impulsivity and inhibitory control deficits are positively associated with several facets of unhealthy eating, including overeating in response to external food cues and in response to negative emotional states, and making food choices based on taste preferences without consideration of health value. We further show that such unhealthy eating is, for the most part, associated with increased BMI, with the exception of Restraint Eating, which is negatively associated with BMI. These results add to our understanding of the impact of individual differences in impulsivity and inhibitory control on key aspects of unhealthy eating and may have implications for the treatment and prevention of obesity
Home-based aerobic exercise and resistance training
Background
The potential effects of aerobic and resistance training in patients with severe chronic kidney disease (CKD) are not fully elucidated. This study investigated the effects of a home-based exercise programme on physical functioning and health-related quality of life (HRQOL) in patients with Stage 4 CKD, equivalent to estimated glomerular filtration rate of 15ā30 mL/min/1.73 m2.
Methods
Forty-six patients with Stage 4 CKD (median age, 73 years; 33 men) were randomly assigned to exercise (n = 23) and control (n = 23) groups. Exercise group patients performed aerobic exercise at 40ā60% peak heart rate thrice weekly and resistance training at 70% of one-repetition maximum twice weekly at home for 6 months. Control patients received no specific intervention. Primary outcomes were distance in incremental shuttle walking test and HRQOL assessed using the Kidney Disease Quality of LifeāShort Form questionnaire. Secondary outcomes included kidney function assessed with combined urea and creatinine clearance, urinary biomarkers, and anthropometric and biochemical parameters associated with CKD.
Results
Improvement in incremental shuttle walking test was significantly greater in the exercise group compared with controls (39.4 Ā± 54.6 vs. ā21.3 Ā± 46.1; P < 0.001). Among Kidney Disease Quality of Life domains, significant mean differences were observed between the exercise group and the control group in work status, quality of social interaction, and kidney disease component summary outcomes (12.76 Ā± 5.76, P = 0.03; 5.97 Ā± 2.59, P = 0.03; and 4.81 Ā± 1.71, P = 0.007, respectively). There were greater reductions in natural log (ln)-transformed urinary excretion of liver-type fatty acid-binding protein, ln serum C-reactive protein, and acylcarnitine to free carnitine ratio in the exercise group compared with controls, with significant between-group differences of ā0.579 Ā± 0.217 (P = 0.008), ā1.13 Ā± 0.35 (P = 0.003), and ā0. 058 Ā± 0.024 (P = 0.01), respectively.
Conclusions
Our 6 month home-based exercise programme improved aerobic capacity and HRQOL in patients with Stage 4 CKD, with possible beneficial effects on kidney function and CKD-related parameters
Developing cardiac and skeletal muscle share fast-skeletal myosin heavy chain and cardiac troponin-I expression
Skeletal muscle derived stem cells (MDSCs) transplanted into injured myocardium can differentiate into fast skeletal muscle specific myosin heavy chain (sk-fMHC) and cardiac specific troponin-I (cTn-I) positive cells sustaining recipient myocardial function. We have recently found that MDSCs differentiate into a cardiomyocyte phenotype within a three-dimensional gel bioreactor. It is generally accepted that terminally differentiated myocardium or skeletal muscle only express cTn-I or sk-fMHC, respectively. Studies have shown the presence of non-cardiac muscle proteins in the developing myocardium or cardiac proteins in pathological skeletal muscle. In the current study, we tested the hypothesis that normal developing myocardium and skeletal muscle transiently share both sk-fMHC and cTn-I proteins. Immunohistochemistry, western blot, and RT-PCR analyses were carried out in embryonic day 13 (ED13) and 20 (ED20), neonatal day 0 (ND0) and 4 (ND4), postnatal day 10 (PND10), and 8 week-old adult female Lewis rat ventricular myocardium and gastrocnemius muscle. Confocal laser microscopy revealed that sk-fMHC was expressed as a typical striated muscle pattern within ED13 ventricular myocardium, and the striated sk-fMHC expression was lost by ND4 and became negative in adult myocardium. cTn-I was not expressed as a typical striated muscle pattern throughout the myocardium until PND10. Western blot and RT-PCR analyses revealed that gene and protein expression patterns of cardiac and skeletal muscle transcription factors and sk-fMHC within ventricular myocardium and skeletal muscle were similar at ED20, and the expression patterns became cardiac or skeletal muscle specific during postnatal development. These findings provide new insight into cardiac muscle development and highlight previously unknown common developmental features of cardiac and skeletal muscle. Ā© 2012 Clause et al
Squalamine: An Appropriate Strategy against the Emergence of Multidrug Resistant Gram-Negative Bacteria?
We reported that squalamine is a membrane-active molecule that targets the membrane integrity as demonstrated by the ATP release and dye entry. In this context, its activity may depend on the membrane lipid composition. This molecule shows a preserved activity against bacterial pathogens presenting a noticeable multi-resistance phenotype against antibiotics such as polymyxin B. In this context and because of its structure, action and its relative insensitivity to efflux resistance mechanisms, we have demonstrated that squalamine appears as an alternate way to combat MDR pathogens and by pass the gap regarding the failure of new active antibacterial molecules
Proteoglycans and osteolysis.
Osteolysis is a complex mechanism resulting from an exacerbated activity of osteoclasts associated or not with a dysregulation of osteoblast metabolism leading to bone loss. This bone defect is not compensated by bone apposition or by apposition of bone matrix with poor mechanical quality. Osteolytic process is regulated by mechanical constraints, by polypeptides including cytokines and hormones, and by extracellular matrix components such as proteoglycans (PGs) and glycosaminoglycans (GAGs). Several studies revealed that GAGs may influence osteoclastogenesis, but data are very controversial: some studies showed a repressive effect of GAGs on osteoclastic differentiation, whereas others described a stimulatory effect. The controversy also affects osteoblasts which appear sometimes inhibited by polysaccharides and sometimes stimulated by these compounds. Furthermore, long-term treatment with heparin leads to the development of osteoporosis fueling the controversy. After a brief description of the principal osteoclastogenesis assays, the present chapter summarizes the main data published on the effect of PGs/GAGs on bone cells and their functional incidence on osteolysis
Induction of IFN-Ī² and the Innate Antiviral Response in Myeloid Cells Occurs through an IPS-1-Dependent Signal That Does Not Require IRF-3 and IRF-7
Interferon regulatory factors (IRF)-3 and IRF-7 are master transcriptional factors that regulate type I IFN gene (IFN-Ī±/Ī²) induction and innate immune defenses after virus infection. Prior studies in mice with single deletions of the IRF-3 or IRF-7 genes showed increased vulnerability to West Nile virus (WNV) infection. Whereas mice and cells lacking IRF-7 showed reduced IFN-Ī± levels after WNV infection, those lacking IRF-3 or IRF-7 had relatively normal IFN-b production. Here, we generated IRF-3ā/āĆ IRF-7ā/ā double knockout (DKO) mice, analyzed WNV pathogenesis, IFN responses, and signaling of innate defenses. Compared to wild type mice, the DKO mice exhibited a blunted but not abrogated systemic IFN response and sustained uncontrolled WNV replication leading to rapid mortality. Ex vivo analysis showed complete ablation of the IFN-Ī± response in DKO fibroblasts, macrophages, dendritic cells, and cortical neurons and a substantial decrease of the IFN-Ī² response in DKO fibroblasts and cortical neurons. In contrast, the IFN-Ī² response was minimally diminished in DKO macrophages and dendritic cells. However, pharmacological inhibition of NF-ĪŗB and ATF-2/c-Jun, the two other known components of the IFN-Ī² enhanceosome, strongly reduced IFN-Ī² gene transcription in the DKO dendritic cells. Finally, a genetic deficiency of IPS-1, an adaptor involved in RIG-I- and MDA5-mediated antiviral signaling, completely abolished the IFN-Ī² response after WNV infection. Overall, our experiments suggest that, unlike fibroblasts and cortical neurons, IFN-Ī² gene regulation after WNV infection in myeloid cells is IPS-1-dependent but does not require full occupancy of the IFN-Ī² enhanceosome by canonical constituent transcriptional factors
Integrative Annotation of 21,037 Human Genes Validated by Full-Length cDNA Clones
The human genome sequence defines our inherent biological potential; the realization of the biology encoded therein requires knowledge of the function of each gene. Currently, our knowledge in this area is still limited. Several lines of investigation have been used to elucidate the structure and function of the genes in the human genome. Even so, gene prediction remains a difficult task, as the varieties of transcripts of a gene may vary to a great extent. We thus performed an exhaustive integrative characterization of 41,118 full-length cDNAs that capture the gene transcripts as complete functional cassettes, providing an unequivocal report of structural and functional diversity at the gene level. Our international collaboration has validated 21,037 human gene candidates by analysis of high-quality full-length cDNA clones through curation using unified criteria. This led to the identification of 5,155 new gene candidates. It also manifested the most reliable way to control the quality of the cDNA clones. We have developed a human gene database, called the H-Invitational Database (H-InvDB; http://www.h-invitational.jp/). It provides the following: integrative annotation of human genes, description of gene structures, details of novel alternative splicing isoforms, non-protein-coding RNAs, functional domains, subcellular localizations, metabolic pathways, predictions of protein three-dimensional structure, mapping of known single nucleotide polymorphisms (SNPs), identification of polymorphic microsatellite repeats within human genes, and comparative results with mouse full-length cDNAs. The H-InvDB analysis has shown that up to 4% of the human genome sequence (National Center for Biotechnology Information build 34 assembly) may contain misassembled or missing regions. We found that 6.5% of the human gene candidates (1,377 loci) did not have a good protein-coding open reading frame, of which 296 loci are strong candidates for non-protein-coding RNA genes. In addition, among 72,027 uniquely mapped SNPs and insertions/deletions localized within human genes, 13,215 nonsynonymous SNPs, 315 nonsense SNPs, and 452 indels occurred in coding regions. Together with 25 polymorphic microsatellite repeats present in coding regions, they may alter protein structure, causing phenotypic effects or resulting in disease. The H-InvDB platform represents a substantial contribution to resources needed for the exploration of human biology and pathology
- ā¦