3,126 research outputs found

    James Webb Space Telescope Optical Simulation Testbed I: Overview and First Results

    Full text link
    The James Webb Space Telescope (JWST) Optical Simulation Testbed (JOST) is a tabletop workbench to study aspects of wavefront sensing and control for a segmented space telescope, including both commissioning and maintenance activities. JOST is complementary to existing optomechanical testbeds for JWST (e.g. the Ball Aerospace Testbed Telescope, TBT) given its compact scale and flexibility, ease of use, and colocation at the JWST Science & Operations Center. We have developed an optical design that reproduces the physics of JWST's three-mirror anastigmat using three aspheric lenses; it provides similar image quality as JWST (80% Strehl ratio) over a field equivalent to a NIRCam module, but at HeNe wavelength. A segmented deformable mirror stands in for the segmented primary mirror and allows control of the 18 segments in piston, tip, and tilt, while the secondary can be controlled in tip, tilt and x, y, z position. This will be sufficient to model many commissioning activities, to investigate field dependence and multiple field point sensing & control, to evaluate alternate sensing algorithms, and develop contingency plans. Testbed data will also be usable for cross-checking of the WFS&C Software Subsystem, and for staff training and development during JWST's five- to ten-year mission.Comment: Proceedings of the SPIE, 9143-150. 13 pages, 8 figure

    Use of waveform lidar and hyperspectral sensors to assess selected spatial and structural patterns associated with recent and repeat disturbance and the abundance of sugar maple (Acer saccharum Marsh.) in a temperate mixed hardwood and conifer forest.

    Get PDF
    Abstract Waveform lidar imagery was acquired on September 26, 1999 over the Bartlett Experimental Forest (BEF) in New Hampshire (USA) using NASA\u27s Laser Vegetation Imaging Sensor (LVIS). This flight occurred 20 months after an ice storm damaged millions of hectares of forestland in northeastern North America. Lidar measurements of the amplitude and intensity of ground energy returns appeared to readily detect areas of moderate to severe ice storm damage associated with the worst damage. Southern through eastern aspects on side slopes were particularly susceptible to higher levels of damage, in large part overlapping tracts of forest that had suffered the highest levels of wind damage from the 1938 hurricane and containing the highest levels of sugar maple basal area and biomass. The levels of sugar maple abundance were determined through analysis of the 1997 Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) high resolution spectral imagery and inventory of USFS Northern Research Station field plots. We found a relationship between field measurements of stem volume losses and the LVIS metric of mean canopy height (r2 = 0.66; root mean square errors = 5.7 m3/ha, p \u3c 0.0001) in areas that had been subjected to moderate-to-severe ice storm damage, accurately documenting the short-term outcome of a single disturbance event

    kNN Classification of Epilepsy Brainwaves

    Get PDF
    Epilepsy is a disorder of the normal brain function by the existence of abnormal synchronous discharges in large groups of neurons in brain structures and it is estimated about 1% of the world’s population suffers from this disease [Tzallas et al., 2009]. It has been reported that the brainwave of Epilepsy patient mostly in sharp, spike and complex wave pattern [Tzallas et al., 2009]. In addition, Epilepsy brainwaves pattern lies in wide variety of Electroencephalogram (EEG) signals in formed of low-amplitude and polyspikes activity [Vargas et al., 2011]. Generally, this disease was examined through the brainwaves or EEG signals by clinical neurulogists. An EEG is a device to record the brainwaves in term of electrical activity from the brain. Brain patterns from wave shapes that are commonly sinusoidal and measured from peak to peak that range from 0.5 ÎŒV to 100 ÎŒV in amplitude. Moreover, the brainwaves have been categorized into four frequency bands, Beta (>13 Hz), Alpha (8-13 Hz), Theta (4-8 Hz) and Delta (0.5-4 Hz). All the frequency bands will be used to characterize the Epilepsy brainwave in terms of amplitude (voltage) and frequency [Mustafa et al., 2013]. The Epilepsy brainwaves were downloaded from http://www.vis.caltech.edu/~rodri/data.htm of Fp1 and Fp2 channels which is from rats. The brainwaves consists Epilepsy and non-Epilepsy samples. Then, the brainwaves were pre-processed to remove artefact (noise). Various methods had been introduced to detect spike-wave discharge in Epilepsy patient brainwave. Brainwave is nonstationary signal, therefore, time-frequency analysis is appropriate methods to analyse the signals[Tzallas et al., 2009, Vargas et al., 2011]. One of the most popular time-frequency analyses is ShortTime Fourier Transform (STFT). After the brainwaves were pre-processed, STFT was employed to the clean brainwaves. The STFT spectrogram was generated for four frequency bands of the samples

    Detection in coincidence of gravitational wave bursts with a network of interferometric detectors (I): Geometric acceptance and timing

    Full text link
    Detecting gravitational wave bursts (characterised by short durations and poorly modelled waveforms) requires to have coincidences between several interferometric detectors in order to reject non-stationary noise events. As the wave amplitude seen in a detector depends on its location with respect to the source direction and as the signal to noise ratio of these bursts are expected to be low, coincidences between antennas may not be so likely. This paper investigates this question from a statistical point of view by using a simple model of a network of detectors; it also estimates the timing precision of a detection in an interferometer which is an important issue for the reconstruction of the source location, based on time delays.Comment: low resolution figure 1 due to file size problem

    “What’s on the Test?”: The Impact of Giving Students a Concept-List Study Guide

    Get PDF
    Students frequently request concept-list study guides prior to exams, but the benefits of instructors providing such resources are unclear. Research on memory and comprehension has suggested that some challenges in learning are associated with benefits to performance. In the context of an introductory psychology course, a study was conducted to investigate the impact of providing a concept-list study guide on exam performance, as opposed to having students create a study guide. Additionally, student preferences for various types of study guides were examined. Results indicated that although students greatly prefer that the instructors provide a study guide (as opposed to making their own), providing a concept-list study guide resulted in poorer exam performance. These results call for future research on the influence of study guides on student performance

    Stromal expression of decorin, Semaphorin6D, SPARC, Sprouty1 and Tsukushi in developing prostate and decreased levels of decorin in prostate cancer.

    Get PDF
    BACKGROUND AND AIM: During prostate development, mesenchymal-epithelial interactions regulate organ growth and differentiation. In adult prostate, stromal-epithelial interactions are important for tissue homeostasis and also play a significant role in prostate cancer. In this study we have identified molecules that show a mesenchymal expression pattern in the developing prostate, and one of these showed reduced expression in prostate cancer stroma. METHODOLOGY AND PRINCIPAL FINDINGS: Five candidate molecules identified by transcript profiling of developmental prostate mesenchyme were selected using a wholemount in situ hybridisation screen and studied Decorin (Dcn), Semaphorin6D (Sema6D), SPARC/Osteonectin (SPARC), Sprouty1 (Spry-1) and Tsukushi (Tsku). Expression in rat tissues was evaluated using wholemount in situ hybridisation (postnatal day (P) 0.5) and immunohistochemistry (embryonic day (E) E17.5, E19.5; P0.5; P6; 28 & adult). Four candidates (Decorin, SPARC, Spry-1, Tsukushi) were immunolocalised in human foetal prostate (weeks 14, 16, 19) and expression of Decorin was evaluated on a human prostate cancer tissue microarray. In embryonic and perinatal rats Decorin, Semaphorin6D, SPARC, Spry-1 and Tsukushi were expressed with varying distribution patterns throughout the mesenchyme at E17.5, E19.5, P0.5 and P6.5. In P28 and adult prostates there was either a decrease in the expression (Semaphorin6D) or a switch to epithelial expression of SPARC, and Spry-1, whereas Decorin and Tsukushi were specific to mesenchyme/stroma at all ages. Expression of Decorin, SPARC, Spry-1 and Tsukushi in human foetal prostates paralleled that in rat. Decorin showed mesenchymal and stromal-specific expression at all ages and was further examined in prostate cancer, where stromal expression was significantly reduced compared with non-malignant prostate. CONCLUSION AND SIGNIFICANCE: We describe the spatio-temporal expression of Decorin, Semaphorin6D, SPARC, Spry-1 and Tsukushi in developing prostate and observed similar mesenchymal expression patterns in rat and human. Additionally, Decorin showed reduced expression in prostate cancer stroma compared to non-malignant prostate stroma

    Fermi-edge singularities in linear and non-linear ultrafast spectroscopy

    Get PDF
    We discuss Fermi-edge singularity effects on the linear and nonlinear transient response of an electron gas in a doped semiconductor. We use a bosonization scheme to describe the low energy excitations, which allows to compute the time and temperature dependence of the response functions. Coherent control of the energy absorption at resonance is analyzed in the linear regime. It is shown that a phase-shift appears in the coherent control oscillations, which is not present in the excitonic case. The nonlinear response is calculated analytically and used to predict that four wave-mixing experiments would present a Fermi-edge singularity when the exciting energy is varied. A new dephasing mechanism is predicted in doped samples that depends linearly on temperature and is produced by the low-energy bosonic excitations in the conduction band.Comment: long version; 9 pages, 4 figure

    Tailoring Anderson localization by disorder correlations in 1D speckle potentials

    Full text link
    We study Anderson localization of single particles in continuous, correlated, one-dimensional disordered potentials. We show that tailored correlations can completely change the energy-dependence of the localization length. By considering two suitable models of disorder, we explicitly show that disorder correlations can lead to a nonmonotonic behavior of the localization length versus energy. Numerical calculations performed within the transfer-matrix approach and analytical calculations performed within the phase formalism up to order three show excellent agreement and demonstrate the effect. We finally show how the nonmonotonic behavior of the localization length with energy can be observed using expanding ultracold-atom gases
    • 

    corecore