65 research outputs found

    Associations between ambient air pollution and daily mortality in a cohort of congestive heart failure: Case-crossover and nested case-control analyses using a distributed lag nonlinear model.

    Get PDF
    BACKGROUND: Persons with congestive heart failure may be at higher risk of the acute effects related to daily fluctuations in ambient air pollution. To meet some of the limitations of previous studies using grouped-analysis, we developed a cohort study of persons with congestive heart failure to estimate whether daily non-accidental mortality were associated with spatially-resolved, daily exposures to ambient nitrogen dioxide (NO2) and ozone (O3), and whether these associations were modified according to a series of indicators potentially reflecting complications or worsening of health. METHODS: We constructed the cohort from the linkage of administrative health databases. Daily exposure was assigned from different methods we developed previously to predict spatially-resolved, time-dependent concentrations of ambient NO2 (all year) and O3 (warm season) at participants' residences. We performed two distinct types of analyses: a case-crossover that contrasts the same person at different times, and a nested case-control that contrasts different persons at similar times. We modelled the effects of air pollution and weather (case-crossover only) on mortality using distributed lag nonlinear models over lags 0 to 3 days. We developed from administrative health data a series of indicators that may reflect the underlying construct of "declining health", and used interactions between these indicators and the cross-basis function for air pollutant to assess potential effect modification. RESULTS: The magnitude of the cumulative as well as the lag-specific estimates of association differed in many instances according to the metric of exposure. Using the back-extrapolation method, which is our preferred exposure model, we found for the case-crossover design a cumulative mean percentage changes (MPC) in daily mortality per interquartile increment in NO2 (8.8 ppb) of 3.0% (95% CI: -0.4, 6.6%) and for O3 (16.5 ppb) 3.5% (95% CI: -4.5, 12.1). For O3 there was strong confounding by weather (unadjusted MPC = 7.1%; 95% CI: 1.7, 12.7%). For the nested case-control approach the cumulative MPC for NO2 in daily mortality was 2.9% (95% CI: -0.9, 6.9%) and for O3 7.3% (95% CI: 3.0, 11.9%). We found evidence of effect modification between daily mortality and cumulative NO2 and O3 according to the prescribed dose of furosemide in the nested case-control analysis, but not in the case-crossover analysis. CONCLUSIONS: Mortality in congestive heart failure was associated with exposure to daily ambient NO2 and O3 predicted from a back-extrapolation method using a land use regression model from dense sampling surveys. The methods used to assess exposure can have considerable influence on the estimated acute health effects of the two air pollutants

    Spatial variations in ambient ultrafine particle concentrations and the risk of incident prostate cancer: A case-control study

    Get PDF
    Background Diesel exhaust contains large numbers of ultrafine particles (UFPs, <0.1 µm) and is a recognized human carcinogen. However, epidemiological studies have yet to evaluate the relationship between UFPs and cancer incidence. Methods We conducted a case-control study of UFPs and incident prostate cancer in Montreal, Canada. Cases were identified from all main Francophone hospitals in the Montreal area between 2005 and 2009. Population controls were identified from provincial electoral lists of French Montreal residents and frequency-matched to cases using 5-year age gr

    Common non-synonymous SNPs associated with breast cancer susceptibility: findings from the Breast Cancer Association Consortium.

    Get PDF
    Candidate variant association studies have been largely unsuccessful in identifying common breast cancer susceptibility variants, although most studies have been underpowered to detect associations of a realistic magnitude. We assessed 41 common non-synonymous single-nucleotide polymorphisms (nsSNPs) for which evidence of association with breast cancer risk had been previously reported. Case-control data were combined from 38 studies of white European women (46 450 cases and 42 600 controls) and analyzed using unconditional logistic regression. Strong evidence of association was observed for three nsSNPs: ATXN7-K264R at 3p21 [rs1053338, per allele OR = 1.07, 95% confidence interval (CI) = 1.04-1.10, P = 2.9 × 10(-6)], AKAP9-M463I at 7q21 (rs6964587, OR = 1.05, 95% CI = 1.03-1.07, P = 1.7 × 10(-6)) and NEK10-L513S at 3p24 (rs10510592, OR = 1.10, 95% CI = 1.07-1.12, P = 5.1 × 10(-17)). The first two associations reached genome-wide statistical significance in a combined analysis of available data, including independent data from nine genome-wide association studies (GWASs): for ATXN7-K264R, OR = 1.07 (95% CI = 1.05-1.10, P = 1.0 × 10(-8)); for AKAP9-M463I, OR = 1.05 (95% CI = 1.04-1.07, P = 2.0 × 10(-10)). Further analysis of other common variants in these two regions suggested that intronic SNPs nearby are more strongly associated with disease risk. We have thus identified a novel susceptibility locus at 3p21, and confirmed previous suggestive evidence that rs6964587 at 7q21 is associated with risk. The third locus, rs10510592, is located in an established breast cancer susceptibility region; the association was substantially attenuated after adjustment for the known GWAS hit. Thus, each of the associated nsSNPs is likely to be a marker for another, non-coding, variant causally related to breast cancer risk. Further fine-mapping and functional studies are required to identify the underlying risk-modifying variants and the genes through which they act.BCAC is funded by Cancer Research UK (C1287/A10118, C1287/A12014) and by the European Community’s Seventh Framework Programme under grant agreement n8 223175 (HEALTH-F2–2009-223175) (COGS). Meetings of the BCAC have been funded by the European Union COST programme (BM0606). Genotyping of the iCOGS array was funded by the European Union (HEALTH-F2-2009-223175), Cancer Research UK (C1287/A10710), the Canadian Institutes of Health Research for the ‘CIHR Team in Familial Risks of Breast Cancer’ program and the Ministry of Economic Development, Innovation and Export Trade of Quebec (PSR-SIIRI-701). Additional support for the iCOGS infrastructure was provided by the National Institutes of Health (CA128978) and Post-Cancer GWAS initiative (1U19 CA148537, 1U19 CA148065 and 1U19 CA148112—the GAME-ON initiative), the Department of Defence (W81XWH-10-1-0341), Komen Foundation for the Cure, the Breast Cancer Research Foundation, and the Ovarian Cancer Research Fund. The ABCFS and OFBCR work was supported by grant UM1 CA164920 from the National Cancer Institute (USA). The content of this manuscript does not necessarily reflect the views or policies of the National Cancer Institute or any of the collaborating centers in the Breast Cancer Family Registry (BCFR), nor does mention of trade names, commercial products or organizations imply endorsement t by the US Government or the BCFR. The ABCFS was also supported by the National Health and Medical Research Council of Australia, the New South Wales Cancer Council, the Victorian Health Promotion Foundation (Australia) and the Victorian Breast Cancer Research Consortium. J.L.H. is a National Health and Medical Research Council (NHMRC) Senior Principal Research Fellow and M.C.S. is a NHMRC Senior Research Fellow. The OFBCR work was also supported by the Canadian Institutes of Health Research ‘CIHR Team in Familial Risks of Breast Cancer’ program. The ABCS was funded by the Dutch Cancer Society Grant no. NKI2007-3839 and NKI2009-4363. The ACP study is funded by the Breast Cancer Research Trust, UK. The work of the BBCC was partly funded by ELAN-Programme of the University Hospital of Erlangen. The BBCS is funded by Cancer Research UK and Breakthrough Breast Cancer and acknowledges NHS funding to the NIHR Biomedical Research Centre, and the National Cancer Research Network (NCRN). E.S. is supported by NIHR Comprehensive Biomedical Research Centre, Guy’s & St. Thomas’ NHS Foundation Trust in partnership with King’s College London, UK. Core funding to the Wellcome Trust Centre for Human Genetics was provided by the Wellcome Trust (090532/Z/09/Z). I.T. is supported by the Oxford Biomedical Research Centre. The BSUCH study was supported by the Dietmar-Hopp Foundation, the Helmholtz Society and the German Cancer Research Center (DKFZ). The CECILE study was funded by the Fondation de France, the French National Institute of Cancer (INCa), The National League against Cancer, the National Agency for Environmental l and Occupational Health and Food Safety (ANSES), the National Agency for Research (ANR), and the Association for Research against Cancer (ARC). The CGPS was supported by the Chief Physician Johan Boserup and Lise Boserup Fund, the Danish Medical Research Council and Herlev Hospital.The CNIO-BCS was supported by the Genome Spain Foundation the Red Temática de Investigación Cooperativa en Cáncer and grants from the Asociación Española Contra el Cáncer and the Fondo de Investigación Sanitario PI11/00923 and PI081120). The Human Genotyping-CEGEN Unit, CNIO is supported by the Instituto de Salud Carlos III. D.A. was supported by a Fellowship from the Michael Manzella Foundation (MMF) and was a participant in the CNIO Summer Training Program. The CTS was initially supported by the California Breast Cancer Act of 1993 and the California Breast Cancer Research Fund (contract 97-10500) and is currently funded through the National Institutes of Health (R01 CA77398). Collection of cancer incidence e data was supported by the California Department of Public Health as part of the statewide cancer reporting program mandated by California Health and Safety Code Section 103885. HAC receives support from the Lon V Smith Foundation (LVS39420). The ESTHER study was supported by a grant from the Baden Württemberg Ministry of Science, Research and Arts. Additional cases were recruited in the context of the VERDI study, which was supported by a grant from the German Cancer Aid (Deutsche Krebshilfe). The GENICA was funded by the Federal Ministry of Education and Research (BMBF) Germany grants 01KW9975/5, 01KW9976/8, 01KW9977/0 and 01KW0114, the Robert Bosch Foundation, Stuttgart, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), as well as the Department of Internal Medicine , Evangelische Kliniken Bonn gGmbH, Johanniter Krankenhaus Bonn, Germany. The HEBCS was supported by the Helsinki University Central Hospital Research Fund, Academy of Finland (132473), the Finnish Cancer Society, The Nordic Cancer Union and the Sigrid Juselius Foundation. The HERPACC was supported by a Grant-in-Aid for Scientific Research on Priority Areas from the Ministry of Education, Science, Sports, Culture and Technology of Japan, by a Grant-in-Aid for the Third Term Comprehensive 10-Year strategy for Cancer Control from Ministry Health, Labour and Welfare of Japan, by a research grant from Takeda Science Foundation , by Health and Labour Sciences Research Grants for Research on Applying Health Technology from Ministry Health, Labour and Welfare of Japan and by National Cancer Center Research and Development Fund. The HMBCS was supported by short-term fellowships from the German Academic Exchange Program (to N.B), and the Friends of Hannover Medical School (to N.B.). Financial support for KARBAC was provided through the regional agreement on medical training and clinical research (ALF) between Stockholm County Council and Karolinska Institutet, the Stockholm Cancer Foundation and the Swedish Cancer Society. The KBCP was financially supported by the special Government Funding (EVO) of Kuopio University Hospital grants, Cancer Fund of North Savo, the Finnish Cancer Organizations, the Academy of Finland and by the strategic funding of the University of Eastern Finland. kConFab is supported by grants from the National Breast Cancer Foundation , the NHMRC, the Queensland Cancer Fund, the Cancer Councils of New South Wales, Victoria, Tasmania and South Australia and the Cancer Foundation of Western Australia. The kConFab Clinical Follow Up Study was funded by the NHMRC (145684, 288704, 454508). Financial support for the AOCS was provided by the United States Army Medical Research and Materiel Command (DAMD17-01-1-0729), the Cancer Council of Tasmania and Cancer Foundation of Western Australia and the NHMRC (199600). G.C.T. and P.W. are supported by the NHMRC. LAABC is supported by grants (1RB-0287, 3PB-0102, 5PB-0018 and 10PB-0098) from the California Breast Cancer Research Program. Incident breast cancer cases were collected by the USC Cancer Surveillance Program (CSP) which is supported under subcontract by the California Department of Health. The CSP is also part of the National Cancer Institute’s Division of Cancer Prevention and Control Surveillance, Epidemiology, and End Results Program, under contract number N01CN25403. LMBC is supported by the ‘Stichting tegen Kanker’ (232-2008 and 196-2010). The MARIE study was supported by the Deutsche Krebshilfe e.V. (70-2892-BR I), the Federal Ministry of Education Research (BMBF) Germany (01KH0402), the Hamburg Cancer Society and the German Cancer Research Center (DKFZ). MBCSG is supported by grants from the Italian Association ciation for Cancer Research (AIRC) and by funds from the Italian citizens who allocated a 5/1000 share of their tax payment in support of the Fondazione IRCCS Istituto Nazionale Tumori, according to Italian laws (INT-Institutional strategic projects ‘5 × 1000’). The MCBCS was supported by the NIH grants (CA122340, CA128978) and a Specialized Program of Research Excellence (SPORE) in Breast Cancer (CA116201), the Breast Cancer Research Foundation and a generous gift from the David F. and Margaret T. Grohne Family Foundation and the Ting Tsung and Wei Fong Chao Foundation. MCCS cohort recruitment was funded by VicHealth and Cancer Council Victoria. The MCCS was further supported by Australian NHMRC grants 209057, 251553 and 504711 and by infrastructure provided by Cancer Council Victoria. The MEC was supported by NIH grants CA63464, CA54281, CA098758 and CA132839. The work of MTLGEBCS was supported by the Quebec Breast Cancer Foundation, the Canadian Institutes of Health Research (grant CRN-87521) and the Ministry of Economic Development, Innovation and Export Trade (grant PSR-SIIRI-701). MYBRCA is funded by research grants from the Malaysian Ministry of Science, Technology and Innovation (MOSTI), Malaysian Ministry of Higher Education (UM.C/HlR/MOHE/06) and Cancer Research Initiatives Foundation (CARIF). Additional controls were recruited by the Singapore Eye Research Institute, which was supported by a grant from the Biomedical Research Council (BMRC08/1/35/19,tel:08/1/35/19./550), Singapore and the National medical Research Council, Singapore (NMRC/CG/SERI/2010). The NBCS was supported by grants from the Norwegian Research council (155218/V40, 175240/S10 to A.L.B.D., FUGE-NFR 181600/ V11 to V.N.K. and a Swizz Bridge Award to A.L.B.D.). The NBHS was supported by NIH grant R01CA100374. Biological sample preparation was conducted the Survey and Biospecimen Shared Resource, which is supported by P30 CA68485. The OBCS was supported by research grants from the Finnish Cancer Foundation, the Sigrid Juselius Foundation, the Academy of Finland, the University of Oulu, and the Oulu University Hospital. The ORIGO study was supported by the Dutch Cancer Society (RUL 1997-1505) and the Biobanking and Biomolecular Resources Research Infrastructure (BBMRI-NLCP16). The PBCS was funded by Intramural Research Funds of the National Cancer Institute, Department of Health and Human Services, USA. pKARMA is a combination of the KARMA and LIBRO-1 studies. KARMA was supported by Ma¨rit and Hans Rausings Initiative Against Breast Cancer. KARMA and LIBRO-1 were supported the Cancer Risk Prediction Center (CRisP; www.crispcenter.org), a Linnaeus Centre (Contract ID 70867902) financed by the Swedish Research Council. The RBCS was funded by the Dutch Cancer Society (DDHK 2004-3124, DDHK 2009-4318). SASBAC was supported by funding from the Agency for Science, Technology and Research of Singapore (A∗STAR), the US National Institute of Health (NIH) and the Susan G. Komen Breast Cancer Foundation KC was financed by the Swedish Cancer Society (5128-B07-01PAF). The SBCGS was supported primarily by NIH grants R01CA64277, R01CA148667, and R37CA70867. Biological sample preparation was conducted the Survey and Biospecimen Shared Resource, which is supported by P30 CA68485. The SBCS was supported by Yorkshire Cancer Research S305PA, S299 and S295. Funding for the SCCS was provided by NIH grant R01 CA092447. The Arkansas Central Cancer Registry is fully funded by a grant from National Program of Cancer Registries, Centers for Disease Control and Prevention (CDC). Data on SCCS cancer cases from Mississippi were collected by the Mississippi Cancer Registry which participates in the National Program of Cancer Registries (NPCR) of the Centers for Disease Control and Prevention (CDC). The contents of this publication are solely the responsibility of the authors and do not necessarily represent the official views of the CDC or the Mississippi Cancer Registry. SEARCH is funded by a programme grant from Cancer Research UK (C490/A10124) and supported by the UK National Institute for Health Research Biomedical Research Centre at the University of Cambridge. The SEBCS was supported by the BRL (Basic Research Laboratory) program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (2012-0000347). SGBCC is funded by the National Medical Research Council Start-up Grant and Centre Grant (NMRC/CG/NCIS /2010). The recruitment of controls by the Singapore Consortium of Cohort Studies-Multi-ethnic cohort (SCCS-MEC) was funded by the Biomedical Research Council (grant number: 05/1/21/19/425). SKKDKFZS is supported by the DKFZ. The SZBCS was supported by Grant PBZ_KBN_122/P05/2004. K. J. is a fellow of International PhD program, Postgraduate School of Molecular Medicine, Warsaw Medical University, supported by the Polish Foundation of Science. The TNBCC was supported by the NIH grant (CA128978), the Breast Cancer Research Foundation , Komen Foundation for the Cure, the Ohio State University Comprehensive Cancer Center, the Stefanie Spielman Fund for Breast Cancer Research and a generous gift from the David F. and Margaret T. Grohne Family Foundation and the Ting Tsung and Wei Fong Chao Foundation. Part of the TNBCC (DEMOKRITOS) has been co-financed by the European Union (European Social Fund – ESF) and Greek National Funds through the Operational Program ‘Education and Life-long Learning’ of the National Strategic Reference Framework (NSRF)—Research Funding Program of the General Secretariat for Research & Technology: ARISTEIA. The TWBCS is supported by the Institute of Biomedical Sciences, Academia Sinica and the National Science Council, Taiwan. The UKBGS is funded by Breakthrough Breast Cancer and the Institute of Cancer Research (ICR). ICR acknowledges NHS funding to the NIHR Biomedical Research Centre. Funding to pay the Open Access publication charges for this article was provided by the Wellcome Trust.This is the advanced access published version distributed under a Creative Commons Attribution License 2.0, which can also be viewed on the publisher's webstie at: http://hmg.oxfordjournals.org/content/early/2014/07/04/hmg.ddu311.full.pdf+htm

    Fine-Scale Mapping of the 4q24 Locus Identifies Two Independent Loci Associated with Breast Cancer Risk

    Get PDF
    Background: A recent association study identified a common variant (rs9790517) at 4q24 to be associated with breast cancer risk. Independent association signals and potential functional variants in this locus have not been explored. Methods: We conducted a fine-mapping analysis in 55,540 breast cancer cases and 51,168 controls from the Breast Cancer Association Consortium. Results: Conditional analyses identified two independent association signals among women of European ancestry, represented by rs9790517 [conditional P = 2.51 × 10−4; OR, 1.04; 95% confidence interval (CI), 1.02–1.07] and rs77928427 (P = 1.86 × 10−4; OR, 1.04; 95% CI, 1.02–1.07). Functional annotation using data from the Encyclopedia of DNA Elements (ENCODE) project revealed two putative functional variants, rs62331150 and rs73838678 in linkage disequilibrium (LD) with rs9790517 (r2 ≥ 0.90) residing in the active promoter or enhancer, respectively, of the nearest gene, TET2. Both variants are located in DNase I hypersensitivity and transcription factor–binding sites. Using data from both The Cancer Genome Atlas (TCGA) and Molecular Taxonomy of Breast Cancer International Consortium (METABRIC), we showed that rs62331150 was associated with level of expression of TET2 in breast normal and tumor tissue. Conclusion: Our study identified two independent association signals at 4q24 in relation to breast cancer risk and suggested that observed association in this locus may be mediated through the regulation of TET2. Impact: Fine-mapping study with large sample size warranted for identification of independent loci for breast cancer risk

    Evaluation of the performance of the generalized estimating equations method for the analysis of crossover designs

    No full text
    Crossover designs are widely used in clinical trials. The main advantage of this type of design is that the treatments are compared within subjects. That is, every subject provides a direct comparison of the treatments he or she has received. In general, a smaller number of subjects is needed to obtain the same precision than with a cross-sectional design. However, because of the correlations within subjects arising from the repeated measurements, the usual analysis of variance based on ordinary least squares (OLS) may be inappropriate to analyze crossover designs. Some approximate likelihood based tests that take into account the structure of the covariance matrix have recently been proposed in the literature.The aim of this thesis is to compare the performance of the OLS method and two of the approximate likelihood based tests to a non-likelihood based method, the generalized estimating equations, for testing the treatment and carryover effects, in crossover designs, under the assumption of multivariate normality

    The short-term influence of temperature on daily mortality in the temperate climate of Montreal, Canada.

    No full text
    The purpose of this study was to determine whether short-term changes in ambient temperature were associated with daily mortality among persons who lived in Montreal, Canada, and who died in the urban area between 1984 and 2007. We made use of newly developed distributed lag non-linear Poisson models, constrained to a 30 day lag period, and we adjusted for temporal trends and nitrogen dioxide and ozone. We found a strong non-linear association with high daily maximum temperatures showing an apparent threshold at about 27°C; this association persisted until about lag 5 days. For example, we found across all lag periods that daily non-accidental mortality increased by 28.4% (95% confidence interval: 13.8-44.9%) when temperatures increased from 22.5 to 31.8°C (75-99th percentiles). This association was essentially invariant to different smoothers for time. Cold temperatures were not found to be associated with daily mortality over 30 days, although there was some evidence of a modest increased risk from 2 to 5 days. The adverse association with colder temperatures was sensitive to the smoother for time. For cardio-respiratory mortality we found increased risks for higher temperatures of a similar magnitude to that of non-accidental mortality but no effects at cold temperatures

    Investigating the role of transportation models in epidemiologic studies of traffic related air pollution and health effects

    No full text
    In two earlier case–control studies conducted in Montreal, nitrogen dioxide (NO2), a marker for traffic-related air pollution was found to be associated with the incidence of postmenopausal breast cancer and prostate cancer. These studies relied on a land use regression model (LUR) for NO2 that is commonly used in epidemiologic studies for deriving estimates of traffic-related air pollution. Here, we investigate the use of a transportation model developed during the summer season to generate a measure of traffic emissions as an alternative to the LUR model. Our traffic model provides estimates of emissions of nitrogen oxides (NOx) at the level of individual roads, as does the LUR model. Our main objective was to compare the distribution of the spatial estimates of NOx computed from our transportation model to the distribution obtained from the LUR model. A secondary objective was to compare estimates of risk using these two exposure estimates. We observed that the correlation (spearman) between our two measures of exposure (NO2 and NOx) ranged from less than 0.3 to more than 0.9 across Montreal neighborhoods. The most important factor affecting the “agreement” between the two measures in a specific area was found to be the length of roads. Areas affected by a high level of traffic-related air pollution had a far better agreement between the two exposure measures. A comparison of odds ratios (ORs) obtained from NO2 and NOx used in two case–control studies of breast and prostate cancer, showed that the differences between the ORs associated with NO2 exposure vs NOx exposure differed by 5.2–8.8%

    Traffic-related air pollution and prostate cancer risk: a case-control study in Montreal, Canada.

    No full text
    International audienceThere is a paucity of information on environmental risk factors for prostate cancer. We conducted a case-control study in Montreal to estimate associations with exposure to ground-level nitrogen dioxide (NO2), a marker for traffic-related air pollution. Cases were 803 men with incident prostate cancer, ≤75 years of age, and diagnosed across all French hospitals in Montreal. Concurrently, 969 controls were drawn from electoral lists of French-speaking individuals residing in the same electoral districts as the cases and frequency-matched by age. Concentrations of NO2 were measured across Montreal in 2005-2006. We developed a land use regression model to predict concentrations of NO2 across Montreal for 2006. These estimates were back-extrapolated to 1996. Estimates were linked to residential addresses at the time of diagnosis or interview. Unconditional logistic regression was used, adjusting for potential confounding variables. For each increase of 5 parts per billion of NO2, as estimated from the original land use regression model in 2006, the OR5ppb adjusted for personal factors was 1.44 (95% CI 1.21 to 1.73). Adding in contextual factors attenuated the OR5ppb to 1.27 (95% CI 1.03 to 1.58). One method for back-extrapolating concentrations of NO2 to 1996 (about 10 years before the index date) gave the following OR5ppb: 1.41 (95% CI 1.24 to 1.62) when personal factors were included, and 1.30 (95% CI 1.11 to 1.52) when contextual factors were added. Exposure to ambient concentrations of NO2 at the current address was associated with an increased risk of prostate cancer. This novel finding requires replication

    Additional file 1: of Age, gender, and current living status were associated with perceived access to treatment among Canadians using a cross sectional survey

    No full text
    This file provides additional data tables describing our study population and analysis. Appendix 1 provides a brief overview of how we constructed the summary variables for several multi-question concepts, including perceived affordability of the healthcare system or its services and medication adherence. Appendix 2 provides a frequency distribution of the CHCs reported by patients in the study population. Appendix 3 provides a frequency distribution for the additional covariates included in the ordinal regression model, outside of the sociodemographic factors seen in Table 1. These frequencies are stratified by the respondents’ reported level of access to treatment(s) needed to manage their CHCs. Appendix 4 provides the results from the univariate regression analysis. Appendix 5 looks into the self-reported reasons for not always having access to treatment to manage CHCs, cited by patients in the study population who perceive their level of access as “Often” or “Sometimes/Rarely/Never.”. (DOCX 84 kb
    corecore