20 research outputs found

    Deregulation of miR-324/KISS1/kisspeptin in early ectopic pregnancy: mechanistic findings with clinical and diagnostic implications

    Get PDF
    [Abstract] BACKGROUND: Ectopic pregnancy is a life-threatening condition for which novel screening tools that would enable early accurate diagnosis would improve clinical outcomes. Kisspeptins, encoded by KISS1, play an essential role in human reproduction, at least partially by regulating placental function and possibly embryo implantation. Kisspeptin levels are elevated massively in normal pregnancy and reportedly altered in various gestational pathologic diseases. Yet, the pathophysiologic role of KISS1/kisspeptin in ectopic pregnancy has not been investigated previously. OBJECTIVE: The purpose of this study was to evaluate changes of KISS1/kisspeptin levels in ectopic pregnancy and their underlaying molecular mechanisms and to ascertain the diagnostic implications of these changes. STUDY DESIGN: A total of 122 women with normal pregnancy who underwent voluntary termination of pregnancy and 84 patients who experienced tubal ectopic pregnancy were recruited. Measurements of plasma kisspeptins and KISS1 expression analyses in human embryonic/placental tissue were conducted in ectopic pregnancy and voluntary termination of pregnancy control subjects during the early gestational window (<12 weeks). Putative microRNA regulators of KISS1 were predicted in silico, followed by expression analyses of selected microRNAs and validation of repressive interactions in vitro. Circulating levels of these microRNAs were also assayed in ectopic pregnancy vs voluntary termination of pregnancy. RESULTS: Circulating kisspeptins gradually increased during the first trimester of normal pregnancy but were reduced markedly in ectopic pregnancy. This profile correlated with the expression levels of KISS1 in human embryonic/placental tissue, which increased in voluntary termination of pregnancy but remained suppressed in ectopic pregnancy. Bioinformatic predictions and expression analyses identified miR-27b-3p and miR-324-3p as putative repressors of KISS1 in human embryonic/placental tissue at <12 weeks gestation, when expression of microRNAs was low in voluntary termination of pregnancy control subjects but significantly increased in ectopic pregnancy. Yet, a significant repressive interaction was documented only for miR-324-3p, occurring at the predicted 3'-UTR of KISS1. Interestingly, circulating levels of miR-324-3p, but not of miR-27b-3p, were suppressed distinctly in ectopic pregnancy, despite elevated tissue expression of the pre-microRNA. A decision-tree model that used kisspeptin and miR-324-3p levels was successful in discriminating ectopic pregnancy vs voluntary termination of pregnancy, with a receiver-operating characteristic area under the curve of 0.95±0.02 (95% confidence interval). CONCLUSION: Our results document a significant down-regulation of KISS1/kisspeptins in early stages of ectopic pregnancy via, at least partially, a repressive interaction with miR-324-3p. Our data identify circulating kisspeptins and miR-324-3p as putative biomarkers for accurate screening of ectopic pregnancy at early gestational ages.Ministerio de E$conomía y Competitividad (España); BFU2014-57581-PMinisterio de Economía y Competitividad ; BFU2017-83934-PInstituto de Salud Carlos III; PIE-00005Junta de Andalucía; P08-CVI-03788Junta de Andalucía; P12-FQM-0194

    Hypothalamic miR-30 regulates puberty onset via repression of the puberty-suppressing factor, Mkrn3.

    Get PDF
    Mkrn3, the maternally imprinted gene encoding the makorin RING-finger protein-3, has recently emerged as putative pubertal repressor, as evidenced by central precocity caused by MKRN3 mutations in humans; yet, the molecular underpinnings of this key regulatory action remain largely unexplored. We report herein that the microRNA, miR-30, with three binding sites in a highly conserved region of its 3' UTR, operates as repressor of Mkrn3 to control pubertal onset. Hypothalamic miR-30b expression increased, while Mkrn3 mRNA and protein content decreased, during rat postnatal maturation. Neonatal estrogen exposure, causing pubertal alterations, enhanced hypothalamic Mkrn3 and suppressed miR-30b expression in female rats. Functional in vitro analyses demonstrated a strong repressive action of miR-30b on Mkrn3 3' UTR. Moreover, central infusion during the juvenile period of target site blockers, tailored to prevent miR-30 binding to Mkrn3 3' UTR, reversed the prepubertal down-regulation of hypothalamic Mkrn3 protein and delayed female puberty. Collectively, our data unveil a novel hypothalamic miRNA pathway, involving miR-30, with a prominent role in the control of puberty via Mkrn3 repression. These findings expand our current understanding of the molecular basis of puberty and its disease states

    Hypothalamic miR-30 regulates puberty onset via repression of the puberty-suppressing factor, Mkrn3

    Get PDF
    Mkrn3, the maternally imprinted gene encoding the makorin RING-finger protein-3, has recently emerged as putative pubertal repressor, as evidenced by central precocity caused by MKRN3 mutations in humans; yet, the molecular underpinnings of this key regulatory action remain largely unexplored. We report herein that the microRNA, miR-30, with three binding sites in a highly conserved region of its 3 ' UTR, operates as repressor of Mkrn3 to control pubertal onset. Hypothalamic miR-30b expression increased, while Mkrn3 mRNA and protein content decreased, during rat postnatal maturation. Neonatal estrogen exposure, causing pubertal alterations, enhanced hypothalamic Mkrn3 and suppressed miR-30b expression in female rats. Functional in vitro analyses demonstrated a strong repressive action of miR-30b on Mkrn3 3 ' UTR. Moreover, central infusion during the juvenile period of target site blockers, tailored to prevent miR-30 binding to Mkrn3 3 ' UTR, reversed the prepubertal down-regulation of hypothalamic Mkrn3 protein and delayed female puberty. Collectively, our data unveil a novel hypothalamic miRNA pathway, involving miR-30, with a prominent role in the control of puberty via Mkrn3 repression. These findings expand our current understanding of the molecular basis of puberty and its disease states

    Genetic modification of primary human B cells to model high-grade lymphoma

    Get PDF
    Sequencing studies of diffuse large B cell lymphoma (DLBCL) have identified hundreds of recurrently altered genes. However, it remains largely unknown whether and how these mutations may contribute to lymphomagenesis, either individually or in combination. Existing strategies to address this problem predominantly utilize cell lines, which are limited by their initial characteristics and subsequent adaptions to prolonged in vitro culture. Here, we describe a co-culture system that enables the ex vivo expansion and viral transduction of primary human germinal center B cells. Incorporation of CRISPR/Cas9 technology enables high-throughput functional interrogation of genes recurrently mutated in DLBCL. Using a backbone of BCL2 with either BCL6 or MYC, we identify co-operating genetic alterations that promote growth or even full transformation into synthetically engineered DLBCL models. The resulting tumors can be expanded and sequentially transplanted in vivo, providing a scalable platform to test putative cancer genes and to create mutation-directed, bespoke lymphoma models

    Galiellalactone induces cell cycle arrest and apoptosis through the ATM/ATR pathway in prostate cancer cells.

    Get PDF
    Galiellalactone (GL) is a fungal metabolite that presents antitumor activities on prostate cancer in vitro and in vivo. In this study we show that GL induced cell cycle arrest in G2/M phase, caspase-dependent apoptosis and also affected the microtubule organization and migration ability in DU145 cells. GL did not induce double strand DNA break but activated the ATR and ATM-mediated DNA damage response (DDR) inducing CHK1, H2AX phosphorylation (fH2AX) and CDC25C downregulation. Inhibition of the ATM/ATR activation with caffeine reverted GL-induced G2/M cell cycle arrest, apoptosis and DNA damage measured by fH2AX. In contrast, UCN-01, a CHK1 inhibitor, prevented GL-induced cell cycle arrest but enhanced apoptosis in DU145 cells. Furthermore, we found that GL did not increase the levels of intracellular ROS, but the antioxidant N-acetylcysteine (NAC) completely prevented the effects of GL on fH2AX, G2/M cell cycle arrest and apoptosis. In contrast to NAC, other antioxidants such as ambroxol and EGCG did not interfere with the activity of GL on cell cycle. GL significantly suppressed DU145 xenograft growth in vivo and induced the expression of fH2AX in the tumors. These findings identify for the first time that GL activates DDR in prostate cancer

    Effect of N-acyl-dopamines on beta cell differentiation and wound healing in diabetic mice.

    No full text
    N-acyl-dopamines are endolipids with neuroprotective, antiinflammatory and immunomodulatory properties. Previously, we showed the ability of these compounds to induce HIF-1α stabilization. Hypoxia and HIF-1α play an important role in the most relevant stages of diabetic pathogenesis. This work analyzes the possible role of these molecules on beta cell differentiation, insulin production and diabetic foot ulcer. Hypoxia response pathway has been characterized in beta-cell differentiation in rat pancreatic acinar cell line and human islet-derived precursor cells. Protein and mRNA expression of key proteins in this process have been analyzed, as well as those involved in beta cells reprogramming. The effect of N-acyl-dopamines on hypoxia response pathway, beta cells reprogramming and insulin production have been studied in both cell types, as well as its role in angiogenesis models in vitro and wound closure in type 2 diabetic mice. Our results show how the hypoxia response pathway is altered during beta cells differentiation, accompanied by an induction of the transcription factor HIF-1α. We demonstrate how some N-acyl-dopamines induce beta cell differentiation and insulin production in two different cell models. In parallel, these endolipids promote angiogenesis in vitro and wound closure in type 2 diabetic mice. These results provide a biological mechanism through which some endolipids could induce beta cell differentiation. We demonstrate how N-acyl-dopamines can modulate insulin production and, in parallel, reverse HIF-1α inhibition in a wound healing model in diabetic mice. Therefore, the potential use of the pharmacological modulation of N-acyl-dopamines may have implications for diabetes prevention and treatment strategies

    Metabolomic profiling of human lung tumor tissues – nucleotide metabolism as a candidate for therapeutic interventions and biomarkers

    Get PDF
    Although metabolomics has attracted considerable attention in the field of lung cancer (LC) detection and management, only a very limited number of works have applied it to tissues. As such, the aim of this study was the thorough analysis of metabolic profiles of relevant LC tissues, including the most important histological subtypes (adenocarcinoma and squamous cell lung carcinoma). Mass spectrometry‐based metabolomics, along with genetic expression and histological analyses, were performed as part of this study, the widest to date, to identify metabolic alterations in tumors of the most relevant histological subtypes in lung. A total of 136 lung tissue samples were analyzed and 851 metabolites were identified through metabolomic analysis. Our data show the existence of a clear metabolic alteration not only between tumor vs. nonmalignant tissue in each patient, but also inherently intrinsic changes in both AC and SCC. Significant changes were observed in the most relevant biochemical pathways, and nucleotide metabolism showed an important number of metabolites with high predictive capability values. The present study provides a detailed analysis of the metabolomic changes taking place in relevant biochemical pathways of the most important histological subtypes of LC, which can be used as biomarkers and also to identify novel targets

    The Expression of the Ubiquitin Ligase SIAH2 (Seven <i>In Absentia</i> Homolog 2) Is Increased in Human Lung Cancer

    No full text
    <div><p>Objectives</p><p>Lung cancer is the leading cause of cancer-related deaths worldwide. Overall 5-year survival has shown little improvement over the last decades. Seven in absentia homolog (SIAH) proteins are E3 ubiquitin ligases that mediate proteasomal protein degradation by poly-ubiquitination. Even though SIAH proteins play a key role in several biological processes, their role in human cancer remains controversial. The aim of the study was to document SIAH2 expression pattern at different levels (mRNA, protein level and immunohistochemistry) in human non-small cell lung cancer (NSCLC) samples compared to surrounding healthy tissue from the same patient, and to analyse the association with clinicopathological features.</p><p>Materials and Methods</p><p>One hundred and fifty-two samples from a patient cohort treated surgically for primary lung cancer were obtained for the study. Genic and protein expression levels of SIAH2 were analysed and compared with clinic-pathologic variables.</p><p>Results</p><p>The present study is the first to analyze the SIAH2 expression pattern at different levels (RNA, protein expression and immunohistochemistry) in non-small cell lung cancer (NSCLC). We found that SIAH2 protein expression is significantly enhanced in human lung adenocarcinoma (ADC) and squamous cell lung cancer (SCC). Paradoxically, non-significant changes at RNA level were found, suggesting a post-traductional regulatory mechanism. More importantly, an increased correlation between SIAH2 expression and tumor grade was detected, suggesting that this protein could be used as a prognostic biomarker to predict lung cancer progression. Likewise, SIAH2 protein expression showed a strong positive correlation with fluorodeoxyglucose (2-deoxy-2(<sup>18</sup>F)fluoro-D-glucose) uptake in primary NSCLC, which may assist clinicians in stratifying patients at increased overall risk of poor survival. Additionally, we described an inverse correlation between the expression of SIAH2 and the levels of one of its substrates, the serine/threonine kinase DYRK2.</p><p>Conclusions</p><p>Our results provide insight into the potential use of SIAH2 as a novel target for lung cancer treatment.</p></div

    SIAH2 protein expression correlates with expression of DYRK2.

    No full text
    <p>(A) Representative images of adenocarcinoma or squamous cell carcinoma, and adjacent normal tissue stained with DYRK2 antibody (x100). (B) BEAS-2B cells were cultured with or without serum during 7 days, lysed and protein expression was evaluated by immunoblot with the indicated antibodies (upper panel) and mRNA expression by qPCR (lower panel). Representative blot out of three independent experiments and the positions and molecular weights (in kDa) are indicated.</p
    corecore