23 research outputs found

    Gene Silencing: Small RNAs Control RNA Polymerase II Elongation

    Get PDF
    SummaryShort interfering RNAs trigger histone silencing marks and stalling of RNA polymerase II at their genomic target sites through a mechanism termed transcriptional gene silencing (TGS). The Argonaute protein NRDE-3, along with NRDE-2, are needed for TGS in C. elegans. TGS also inhibits elongation and controls alternative splicing in mammalian cells

    RNA Polymerase II Elongation at the Crossroads of Transcription and Alternative Splicing

    Get PDF
    The elongation phase of transcription lies at the core of several simultaneous and coupled events leading to alternative splicing regulation. Although underestimated in the past, it is at this phase of the transcription cycle where complexes affecting the transcription machinery itself, chromatin structure, posttranscriptional gene regulation and pre-mRNA processing converge to regulate each other or simply to consolidate higher-order complexes and functions. This paper focuses on the multiple processes that take place during transcription elongation which ultimately regulate the outcome of alternative splicing decisions

    Nuclear role for human Argonaute-1 as an estrogen-dependent transcription coactivator

    Get PDF
    In mammals, argonaute (AGO) proteins have been characterized for their roles in small RNA mediated posttranscriptional and also in transcriptional gene silencing. Here, we report a different role for AGO1 in estradiol-triggered transcriptional activation in human cells. We show that in MCF-7 mammary gland cells, AGO1 associates with transcriptional enhancers of estrogen receptor α (ERα) and that this association is up-regulated by treating the cells with estrogen (E2), displaying a positive correlation with the activation of these enhancers.Moreover, we show that AGO1 interacts with ERα and that this interaction is also increased by E2 treatment, but occurs in the absence of RNA. We show that AGO1 acts positively as a coactivator in estradiol-triggered transcription regulation by promoting ERα binding to its enhancers. Consistently, AGO1 depletion decreases long-range contacts between ERα enhancers and their target promoters. Our results point to a role of AGO1 in transcriptional regulation in human cells that is independent from small RNA binding.Fil: Gómez Acuña, Luciana Inés. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; ArgentinaFil: Nazer, Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; ArgentinaFil: Rodríguez Seguí, Santiago Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; ArgentinaFil: Pozzi, María Berta. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; ArgentinaFil: Buggiano, Valeria Carmen. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; ArgentinaFil: Marasco, Luciano Edmundo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; ArgentinaFil: Agirre, Eneritz. Karolinska Huddinge Hospital. Karolinska Institutet; SueciaFil: He, Cody. University of Chicago; Estados UnidosFil: Alló, Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; ArgentinaFil: Kornblihtt, Alberto Rodolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; Argentin

    Progesterone Receptor induces bcl-x expression through intragenic binding sites favoring RNA Polymerase II elongation

    Get PDF
    Steroid receptors were classically described for regulating transcription by binding to target gene promoters. However, genome-wide studies reveal that steroid receptors-binding sites are mainly located at intragenic regions. To determine the role of these sites, we examined the effect of pro- gestins on the transcription of the bcl-x gene, where only intragenic progesterone receptor-binding sites (PRbs) were identified. We found that in response to hormone treatment, the PR is recruited to these sites along with two histone acetyltransferases CREB-binding protein (CBP) and GCN5, leading to an increase in histone H3 and H4 acetylation and to the binding of the SWI/SNF complex. Concomitant, a more relaxed chromatin was detected along bcl-x gene mainly in the regions sur- rounding the intragenic PRbs. PR also mediated the recruitment of the positive elongation factor pTEFb, favoring RNA polymerase II (Pol II) elongation activity. Together these events promoted the re-dis- tribution of the active Pol II toward the 30-end of the gene and a decrease in the ratio between proximal and distal transcription. These results suggest a novel mechanism by which PR regulates gene ex- pression by facilitating the proper passage of the polymerase along hormone-dependent genes.Fil: Bertucci, Paola Yanina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias; ArgentinaFil: Nacht, Ana Silvina. Universitat Pompeu Fabra; España. Centro de Regulación Genómica; EspañaFil: Alló, Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias; ArgentinaFil: Rocha Viegas, Luciana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Fisiología, Biología Molecular y Celular; ArgentinaFil: Ballaré, Cecilia. Universitat Pompeu Fabra; España. Centro de Regulación Genómica; EspañaFil: Soronellas, Daniel. Centro de Regulación Genómica; España. Universitat Pompeu Fabra; EspañaFil: Castellano, Giancarlo. Centro de Regulación Genómica; España. Universitat Pompeu Fabra; EspañaFil: Zaurin, Roser. Centro de Regulación Genómica; España. Universitat Pompeu Fabra; EspañaFil: Kornblihtt, Alberto Rodolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Fisiología, Biología Molecular y Celular; ArgentinaFil: Beato, Miguel. Centro de Regulación Genómica; España. Universitat Pompeu Fabra; EspañaFil: Vicent, Guillermo. Centro de Regulación Genómica; España. Universitat Pompeu Fabra; EspañaFil: Pecci, Adali. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias; Argentin

    Epigenetic regulation of alternative splicing by means of small RNAs and argonaute 1

    No full text
    Los RNAs pequeños interferentes (siRNAs) son conocidos por mediar el silenciamiento post-transcripcional de genes (PTGS) promoviendo la degradación de mRNAs targets. Cuando son dirigidos contra regiones promotoras, los siRNAs participan en una vía alternativa conocida como silenciamiento transcripcional de genes (TGS) que promueve la metilación de histonas, formación de heterocromatina e inhibición de la transcripción. Mostramos aquí que los siRNAs dirigidos contra secuencias ubicadas en cercanías al exón alternativo EDI del gen de la fibronectina son capaces de regular su splicing alternativo en celulas de mamíferos. El efecto necesita de dos proteínas claves de la vía de interferencia por RNA, AGO1 y AG02. Sin embargo, como sólo AGO1 es necesario para el TGS concluimos que ésta es la principal vía involucrada. Por otra parte, la importancia del estado de la cromatina ha sido resaltada al mostrar que los efectos son eliminados o reducidos por factores que favorecen una estructura cromatínica mas relajada o que aumentan la elongación de la transcripción. Más aun, el mecanismo involucra la presencia de marcas epigenéticas de heterocromatina facultativa (H3K9me2 y H3K27me3) intragénicas en la región target y la función de la proteína asociada a heterocromatina HP1alfa. Utilizando tecnología genome-wide encontramos que aproximadamente el 40% de los eventos de splicing alternativo contenidos en un panel de RT-PCR relacionado a cáncer fueron afectados tras la depleción de AGO1 o Dicer. Mediante experimentos de ChIP-seq hemos encontrado un enriquecimiento de clusters de AGO1 en promotores de genes con alta expresión y en exones ubicados en genes con baja tasa transcripcional. Adicionalmente, descubrimos un aumento del solapamiento de marcas de histonas sobre sitios target de AGO1. Finalmente, hemos detectado un evento de splicing alternativo endogeno del gen SYNE2 (exón 107) que podría estar siendo afectado fisiológicamente por AGO1.Fil:Alló, Mariano. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina

    Connections between chromatin signatures and splicing

    Get PDF
    Splicing and alternative splicing are involved in the expression of most human genes, playing key roles in differentiation, cell cycle progression, and development. Misregulation of splicing is frequently associated to disease, which imposes a better understanding of the mechanisms underlying splicing regulation. Accumulated evidence suggests that multiple trans-acting factors and cis-regulatory elements act together to determine tissue-specific splicing patterns. Besides, as splicing is often cotranscriptional, a complex picture emerges in which splicing regulation not only depends on the balance of splicing factor binding to their pre-mRNA target sites but also on transcription-associated features such as protein recruitment to the transcribing machinery and elongation kinetics. Adding more complexity to the splicing regulation network, recent evidence shows that chromatin structure is another layer of regulation that may act through various mechanisms. These span from regulation of RNA polymerase II elongation, which ultimately determines splicing decisions, to splicing factor recruitment by specific histone marks. Chromatin may not only be involved in alternative splicing regulation but in constitutive exon recognition as well. Moreover, splicing was found to be necessary for the proper ‘writing’ of particular chromatin signatures, giving further mechanistic support to functional interconnections between splicing, transcription and chromatin structure. These links between chromatin configuration and splicing raise the intriguing possibility of the existence of a memory for splicing patterns to be inherited through epigenetic modifications.Fil: Gómez Acuña, Luciana Inés. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; ArgentinaFil: Fiszbein, Ana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; ArgentinaFil: Alló, Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; ArgentinaFil: Schor, Ignacio Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; ArgentinaFil: Kornblihtt, Alberto Rodolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; Argentin

    Epigenetics in Alternative Pre-mRNA Splicing

    Get PDF
    Alternative splicing plays critical roles in differentiation, development, and disease and is a major source for protein diversity in higher eukaryotes. Analysis of alternative splicing regulation has traditionally focused on RNA sequence elements and their associated splicing factors, but recent provocative studies point to a key function of chromatin structure and histone modifications in alternative splicing regulation. These insights suggest that epigenetic regulation determines not only what parts of the genome are expressed but also how they are spliced.Fil: Luco, Reini F.. National Institutes of Health; Estados UnidosFil: Alló, Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; ArgentinaFil: Schor, Ignacio Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; ArgentinaFil: Kornblihtt, Alberto Rodolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; ArgentinaFil: Misteli, Tom. National Institutes of Health; Estados Unido

    A chromatin code for alternative splicing involving a putative association between CTCF and HP1alpha proteins

    No full text
    BACKGROUND: Alternative splicing is primarily controlled by the activity of splicing factors and by the elongation of the RNA polymerase II (RNAPII). Recent experiments have suggested a new complex network of splicing regulation involving chromatin, transcription and multiple protein factors. In particular, the CCCTC-binding factor (CTCF), the Argonaute protein AGO1, and members of the heterochromatin protein 1 (HP1) family have been implicated in the regulation of splicing associated with chromatin and the elongation of RNAPII. These results raise the question of whether these proteins may associate at the chromatin level to modulate alternative splicing. RESULTS:Using chromatin immunoprecipitation sequencing (ChIP-Seq) data for CTCF, AGO1, HP1a, H3K27me3, H3K9me2, H3K36me3, RNAPII, total H3 and 5metC and alternative splicing arrays from two cell lines, we have analyzed the combinatorial code of their binding to chromatin in relation to the alternative splicing patterns between two cell lines, MCF7 and MCF10. Using Machine Learning techniques, we identified the changes in chromatin signals that are most significantly associated with splicing regulation between these two cell lines. Moreover, we have built a map of the chromatin signals on the pre-mRNA, that is, a chromatin-based RNA-map, which can explain 606 (68.55%) of the regulated events between MCF7 and MCF10. This chromatin code involves the presence of HP1a, CTCF, AGO1, RNAPII and histone marks around regulated exons and can differentiate patterns of skipping and inclusion. Additionally, we found a significant association of HP1a and CTCF activities around the regulated exons and a putative DNA binding site for HP1alpha. CONCLUSIONS:Our results show that a considerable number of alternative splicing events could have a chromatin-dependent regulation involving the association of HP1a and CTCF near regulated exons. Additionally, we find further evidence for the involvement of HP1a and AGO1 in chromatin-related splicing regulation.This work was partly supported by the European Alternative Splicing Network (EURASNET). Additionally, E.A, N.B, A.P. and E.E were supported by grants BIO2011-23920 and CSD2009-00080 from MINECO (Spanish Government) and by a grant from the Sandra Ibarra Foundation for Cancer; A.R.K. was supported by grants from the Agencia Nacional de Promoción de Ciencia y Tecnología of Argentina, the University of Buenos Aires, the Howard Hughes Medical Institute; and M.A. by a short term fellowships from EMBO, the Journal of Cell Science and UICC
    corecore