1,569 research outputs found

    Modeling user navigation

    Get PDF
    This paper proposes the use of neural networks as a tool for studying navigation within virtual worlds. Results indicate that the network learned to predict the next step for a given trajectory. The analysis of hidden layer shows that the network was able to differentiate between two groups of users identified on the basis of their performance for a spatial task. Time series analysis of hidden node activation values and input vectors suggested that certain hidden units become specialised for place and heading, respectively. The benefits of this approach and the possibility of extending the methodology to the study of navigation in Human Computer Interaction applications are discussed

    Shadowing of gluons in perturbative QCD: A comparison of different models

    Get PDF
    We investigate the different perturbative QCD-based models for nuclear shadowing of gluons. We show that in the kinematic region appropriate to RHIC experiment, all models give similar estimates for the magnitude of gluon shadowing. At scales relevant to LHC, there is a sizable difference between predictions of the different models.Comment: 11 pages, 4 figure

    Dilepton production from the Color Glass Condensate

    Get PDF
    We consider dilepton production in high energy proton-nucleus (and very forward nucleus-nucleus) collisions. Treating the target nucleus as a Color Glass Condensate and describing the projectile proton (nucleus) as a collection of quarks and gluons as in the parton model, we calculate the differential cross section for dilepton production in quark-nucleus scattering and show that it is very sensitive to the saturation scale characterizing the target nucleus.Comment: 9 pages LaTeX document, 1 postscript figur

    Thermalized Displaced and Squeezed Number States in Coordinate Representation

    Full text link
    Within the framework of thermofield dynamics, the wavefunctions of the thermalized displaced number and squeezed number states are given in the coordinate representation. Furthermore, the time evolution of these wavefunctions is considered by introducing a thermal coordinate representation, and we also calculate the corresponding probability densities, average values and variances of position coordinate, which are consistent with results in the literature.Comment: 12 pages, no figures, Revtex. v3: substantially revise

    Chiral dynamics and the growth of the nucleon's gluonic transverse size at small x

    Full text link
    We study the distribution of gluons in transverse space in the nucleon at moderately small x (~10^{-2}). At large transverse distances (impact parameters) the gluon density is generated by the 'pion cloud' of the nucleon, and can be calculated in terms of the gluon density in the pion. We investigate the large-distance behavior in two different approaches to chiral dynamics: i) phenomenological soft-pion exchange, ii) the large-N_c picture of the nucleon as a classical soliton of the pion field, which corresponds to degenerate N and Delta states. The large-distance contributions from the 'pion cloud' cause a \~20% increase in the overall transverse size of the nucleon if x drops significantly below M_pi/M_N. This is in qualitative agreement with the observed increase of the slope of the t-dependence of the J/psi photoproduction cross section at HERA compared to fixed-target energies. We argue that the glue in the pion cloud could be probed directly in hard electroproduction processes accompanied by 'pion knockout', gamma^* + N -> gamma (or rho, J/psi) + pi + N', where the transverse momentum of the emitted pion is large while that of the outgoing nucleon is restricted to values of order M_pi.Comment: 20 pages, revtex4, 10 eps figure

    Saturation and parton level Cronin effect: enhancement vs suppression of gluon production in p-A and A-A collisions

    Full text link
    We note that the phenomenon of perturbative saturation leads to transverse momentum broadening in the spectrum of partons produced in hadronic collisions. This broadening has a simple interpretation as parton level Cronin effect for systems in which saturation is generated by the "tree level" Glauber-Mueller mechanism. For systems where the broadening results form the nonlinear QCD evolution to high energy, the presence or absence of Cronin effect depends crucially on the quantitative behavior of the gluon distribution functions at transverse momenta kt outside the so called scaling window. We discuss the relation of this phenomenon to the recent analysis by Kharzeev-Levin-McLerran of the momentum and centrality dependence of particle production in nucleus-nucleus collisions at RHIC.Comment: 22 pages LaTex, 7 eps-figures, discussion of evolved gluon distribution revised significantl

    Simulating non-Markovian stochastic processes

    Get PDF
    We present a simple and general framework to simulate statistically correct realizations of a system of non-Markovian discrete stochastic processes. We give the exact analytical solution and a practical an efficient algorithm alike the Gillespie algorithm for Markovian processes, with the difference that now the occurrence rates of the events depend on the time elapsed since the event last took place. We use our non-Markovian generalized Gillespie stochastic simulation methodology to investigate the effects of non-exponential inter-event time distributions in the susceptible-infected-susceptible model of epidemic spreading. Strikingly, our results unveil the drastic effects that very subtle differences in the modeling of non-Markovian processes have on the global behavior of complex systems, with important implications for their understanding and prediction. We also assess our generalized Gillespie algorithm on a system of biochemical reactions with time delays. As compared to other existing methods, we find that the generalized Gillespie algorithm is the most general as it can be implemented very easily in cases, like for delays coupled to the evolution of the system, where other algorithms do not work or need adapted versions, less efficient in computational terms.Comment: Improvement of the algorithm, new results, and a major reorganization of the paper thanks to our coauthors L. Lafuerza and R. Tora

    The initial energy density of gluons produced in very high energy nuclear collisions

    Get PDF
    In very high energy nuclear collisions, the initial energy of produced gluons per unit area per unit rapidity, dE/L2/dηdE/L^2/d\eta, is equal to f(g2ÎŒL)(g2ÎŒ)3/g2f(g^2\mu L) (g^2\mu)^3/g^2, where ÎŒ2\mu^2 is proportional to the gluon density per unit area of the colliding nuclei. For an SU(2) gauge theory, we perform a non--perturbative numerical computation of the function f(g2ÎŒL)f(g^2\mu L). It decreases rapidly for small g2ÎŒLg^2\mu L but varies only by ∌25\sim 25%, from 0.208±0.0040.208\pm 0.004 to 0.257±0.0050.257\pm 0.005, for a wide range 35.36--296.98 in g2ÎŒLg^2\mu L, including the range relevant for collisions at RHIC and LHC. Extrapolating to SU(3), we estimate the initial energy per unit rapidity for Au-Au collisions in the central region at RHIC and LHC.Comment: 11 pages, Latex, 3 figures; revised version-includes additional numerical data; reference adde

    Eikonal Evolution and Gluon Radiation

    Get PDF
    We give a simple quantum mechanical formulation of the eikonal propagation approximation, which has been heavily used in recent years in problems involving hadronic interactions at high energy. This provides a unified framework for several approaches existing in the literature. We illustrate this scheme by calculating the total, elastic, inelastic and diffractive DIS cross sections, as well as gluon production in high energy hadronic collisions. From the q-qbar-g-component of the DIS cross sections, we straightforwardly derive low x evolution equations for inelastic and diffractive DIS distribution functions. In all calculations, we provide all order 1/N corrections to the results existing in the literature.Comment: 40 pages, LaTeX, 3 eps-figures, typos corrected, to be published in PR
    • 

    corecore