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We present a simple and general framework to simulate statistically correct realizations of a system of
non-Markovian discrete stochastic processes. We give the exact analytical solution and a practical and efficient
algorithm like the Gillespie algorithm for Markovian processes, with the difference being that now the occurrence
rates of the events depend on the time elapsed since the event last took place. We use our non-Markovian
generalized Gillespie stochastic simulation methodology to investigate the effects of nonexponential interevent
time distributions in the susceptible-infected-susceptible model of epidemic spreading. Strikingly, our results
unveil the drastic effects that very subtle differences in the modeling of non-Markovian processes have on the
global behavior of complex systems, with important implications for their understanding and prediction. We also
assess our generalized Gillespie algorithm on a system of biochemical reactions with time delays. As compared
to other existing methods, we find that the generalized Gillespie algorithm is the most general because it can
be implemented very easily in cases (such as for delays coupled to the evolution of the system) in which other
algorithms do not work or need adapted versions that are less efficient in computational terms.
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I. INTRODUCTION

Discrete stochastic processes are widespread in nature and
human-made systems. Chemical reactions and biochemical
processes in living cells, epidemic propagation in populations,
and diffusion of information in societies and technological
networks are all examples of systems whose states change at
discrete random intervals, defining a sequence of events that
conform a mixture of temporal point processes. In general,
these processes are assumed to be memoryless, with future
occurrences predictable based solely on the present state of
the system, and with exponentially distributed interevent times
so that the dynamics can be described only in terms of the
rates of occurrence of each of the processes involved. In
this case, there exist stochastic simulation algorithms able
to generate statistically exact realizations of the stochastic
process, including the seminal method developed by Gillespie
for Markovian dynamics modeled by Poisson point processes
and its variations [1–3].

While considering that the time between two consecutive
events is exponentially distributed turns out to be a good
approximation in some cases, it fails dramatically in many
others. Indeed, nonexponential interevent time distributions
have been reported in different contexts, making evident mem-
ory effects and, thus, non-Markovian dynamics. Applications
include different problems in reliability analysis [4] or queuing
theory [5], but relevant examples are found in many different
areas dealing, for instance, with patterns of human activity
[6–13] (from communication to mobility), bursty fluctuations
of connections in temporal networks [14,15], or biochemical
reactions with time delays [16–26], to name just a few.
Non-Markovian stochastic processes are notoriously difficult
to tackle analytically and, in many cases, their understanding
relies on numerical simulations [13,17–21,27].

In this paper, we develop a simple and general framework to
simulate statistically correct realizations of discrete stochastic
processes, each with an arbitrary interevent time distribution,

that may stochastically create or annihilate other processes and
that can depend on the current state of the system. We provide
the exact solution to the problem, along with an approximation
in the limit of large systems, leading to an efficient and
simple stochastic simulation algorithm in the same spirit as
the Gillespie algorithm for practical applicability. We apply
our generalized Gillespie algorithm to two case studies: the
susceptible-infected-susceptible epidemic spreading model
in contact networks, and a system of coupled biochemical
reactions with time delays where we compare with already
existing methods. Our results highlight the important effects
that subtle differences in the non-Markovian dynamical rules
underlying the stochastic processes have on the global behavior
of complex systems.

II. MARKOVIAN STOCHASTIC SIMULATION: THE
GILLESPIE ALGORITHM

The Gillespie algorithm [1,2] was originally designed to
simulate systems of coupled (bio)chemical reactions within a
thermal bath in a well-mixed environment, but, more generally,
it can be applied to any system of discrete Markovian stochastic
processes. The algorithm takes advantage of the theory of
superposition of a (fixed) number of renewal processes [28].
Suppose we have a collection of N statistically independent
discrete stochastic processes, each occurring at rate λi , i =
1, . . . ,N . The Gillespie algorithm generates a sequence of
events by specifying, at each step of the simulation, the time
until the next event τ [generated from the distribution ϕ(τ )]
and the next event i, generated from the probability �(i). It
can be proved that for Poisson point processes (constant rates),
these are given by

�(i) = λi

Nλ̄
and ϕ(τ ) = Nλ̄e−Nλ̄τ , (1)

where λ̄ = N−1 ∑N
k=1 λk is the population mean rate of the set

of processes [28]. Notice that, in general, the occurrence of a
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particular event can modify, besides the state of the system,
both the rates and/or the number of “active” processes (those
that can occur given the current state of the system) for the
next iteration. For instance, a given reaction taking place
modifies the number of molecules of all species involved in
that particular reaction, which, in turn, modifies the rates of
occurrences of all reactions in which these species participate.
This makes the algorithm extremely powerful and versatile, as
it can simulate reactionlike processes for which the number
of processes is stochastically generated by the realization,
including nonequilibrium dynamics with absorbing states.

III. NON-MARKOVIAN STOCHASTIC SIMULATION

Next, we generalize the Gillespie algorithm to account
for non-Markovian interevent times. As before, we con-
sider a set of N statistically independent discrete stochastic
processes, each with an interevent time distribution ψi(τ );
i = 1, . . . ,N [29]. Suppose now that, for a given process i and
a given point in time, we know the time elapsed since the last
event, ti , and ask the probability that the next event will occur
at a time between τ and τ + dτ from that moment (hereafter,
we use the latin symbol ti to denote elapsed times, and the
greek symbol τ to denote the time until a future event). This
probability density can be expressed as [30]

ψi(τ |ti) = ψi(τ + ti)

�i(ti)
, (2)

where �i(τ ) is the survival probability of process i, that is,
the probability that the time until the next event is longer
than τ , �i(τ ) = ∫ ∞

τ
ψi(s)ds. Analogously, the conditional

survival probability of process i is given by �i(τ |ti) =∫ ∞
τ

ds ψi(s|ti) = �i(τ + ti)/�i(ti).
In a single realization of the dynamics, all processes happen

in the same timeline in random order. Therefore, to generate a
statistically correct sequence of events in a simulation, we have
to evaluate the joint probability ϕ(τ,i|{tk}) that, given the times
{tk} elapsed since the last occurrence of each process up to a
given point in time t , the next event taking place corresponds
to process i and will occur at time t + τ . Since the probability
that process k �= i does not occur is �k(τ |tk), we have

ϕ(τ,i|{tk}) = ψi(τ |ti)
∏
k �=i

�k(τ |tk) = ψi(τ + ti)

�i(τ + ti)
�(τ |{tk}),

(3)
where

�(τ |{tk}) =
N∏

k=1

�k(τ + tk)

�k(tk)
(4)

is the survival probability of τ , i.e., the probability that no
reaction occurs before t + τ . Note that the joint probability
Eq. (3) is well normalized.

Given the occurrence time τ , the probability that the next
occurring event belongs to process i is

�(i|τ,{tk}) = ϕ(τ,i|{tk})∑
j ϕ(τ,j |{tk}) = λi(ti + τ )∑

j λj (tj + τ )
, (5)

where we have introduced the instantaneous (hazard) rate of
process k as

λi(τ ) ≡ ψi(τ )

�i(τ )
. (6)

Equations (4) and (5) provide us with an algorithm that
generates statistically correct sequences of events, which are
listed as follows:

(i) Initialize elapsed times for all processes.
(ii) Draw a random time from the cumulative distribution

Eq. (4) by solving �(τ |{tk}) = u, where u is a uniform random
number in the interval (0,1), and update the current time as
t → t + τ .

(iii) Choose a process i from the discrete distribution
Eq. (5).

(iv) Update the list of elapsed times as

tk → tk + τ, ∀ k �= i and ti = 0.

(v) Update the state of the system and, if needed, the set of
active processes. If a new process, say process k, is activated,
set its elapsed time. Go to step (ii).

The initialization of elapsed times can be implemented in
different ways depending on the particular application. One
simple possibility would be to set the initial elapsed times to
zero. Another approach is to assume that the system is already
in the steady state and, thus, set elapsed times according to
the probability density �i(t)/〈τi〉, where 〈τi〉 is the average
interevent time of process i [31].

A. Generalized Gillespie algorithm

The most frequent applications typically involve a fairly
large number of processes N . It is possible to work out a simple
approximation that becomes exact in the limit N → ∞ and
drastically simplifies the numerical computation of the time
τ needed in point (ii) of the algorithm. We start by rewriting
function �(τ |{tk}) as

�(τ |{tk}) = exp

[
−

N∑
k=1

ln

(
�k(tk)

�k(τ + tk)

)]
. (7)

The sum within the exponential function is a sum of N

monotonously increasing functions of τ . Therefore, when
N 	 1, the survival probability �(τ |{tk}) is close to zero
everywhere except when τ ∼ 0. Hence we only need to
consider �(τ |{tk}) around τ = 0, where an expansion in small
τ can be performed: �k(τ + tk) = �k(tk) − ψk(tk)τ + O(τ 2).
Plugging this expression into Eq. (7), we can write

�(τ |{tk}) ≈ e−τNλ̄({tk}), (8)

where the average rate is λ̄({tk}) = N−1 ∑N
k=1 λk(tk). The

previous expansion assumes that �k(τ + tk) is analytical at
tk = 0, a hypothesis that sometimes is not true. To overcome
this singular case, we remove the last event, the one for
which tlast = 0, from the sum in λ̄({tk}). This implies that the
probability to choose the same event two times in a row with
our algorithm is zero. While this restriction is in general not
present in the real dynamics, the probability of such an event is
negligible for large N , and thus our assumption does not have
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any noticeable effect while avoiding a potential divergence of
the algorithm in cases in which limτ→0+ ψi(τ ) = ∞ [32].

Within this approximation, the probability that the next
event taking place belongs to process i can be obtained from
Eq. (5) setting τ = 0:

�(i|{tk}) = λi(ti)

Nλ̄({tk}) , (9)

whereas the distribution of the time until the next event is

ϕ(τ |{tk}) = Nλ̄({tk})e−Nλ̄({tk})τ . (10)

In the Markovian case, λi(ti) = λi and we recover the classical
Gillespie algorithm given in Eq. (1). In fact, quite remarkably,
the new algorithm works like the original Gillespie algorithm,
with the difference being that now the individual rates depend
on the elapsed times of the processes, and thus they are
stochastic processes themselves. We name this algorithm the
generalized “non-Markovian Gillespie algorithm” (nMGA).

We test the nMGA with a set of N = 103 independent
renewal processes. The interevent time survival probability is
taken to be the versatile Weibull distribution

�i(τ ) = e−(μiτ )αi (11)

for all processes. However, the scale and shape parameter of
each process, μ−1

i and αi , are chosen uniformly at random in
the intervals μi ∈ (0.1,1) and αi ∈ (0.5,1.5), so that processes
with temporal scales that differ in many orders of magnitude
are mixed in the simulation. The individual instantaneous rates
to be used in Eqs. (9) and (10) are given by

λi(ti) = αiμ
αi

i t
αi−1
i . (12)

Note that the rates diverge at ti = 0 whenever αi < 1. We
generate a single long sequence of mixed events according
to the nMGA. Then we measure the interevent time sur-
vival probability for each process. In Fig. 1(a), we show a
comparison between the survival probability for three such
processes and the theoretical distribution Eq. (11) with the
corresponding parameters. As can be seen, the agreement
is extremely good even when processes with very different
time scales are combined. In Fig. 1(b), we check the effect of
having a limited number of processes. Even though the nMGA
is only approximate, our numerical simulations indicate that
even for a small number of processes (20 in our simulations),
the algorithm is able to reproduce the interevent times very
accurately, with a small deviation for processes with αi > 1.

Next, we present two relevant examples. In the first, we
shall see the effects of a non-Markovian dynamics and, as
opposed to the Markovian case, the importance of the specific
details of the laws governing the dynamics. In the second, we
compare the computational efficiency of the nMGA with other
existing methods.

IV. EPIDEMIC SPREADING: THE SIS MODEL
AS A CASE STUDY

The susceptible-infected-susceptible (SIS) model is one
of the simplest and most paradigmatic models of epidemic
spreading [33]. In this model, individuals within a contact
network can be in two states, either susceptible or infected.
Infected individuals remain in this state during a random time
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FIG. 1. (Color online) Testing the algorithm. Survival probabil-
ity for three processes generated by the nMGA with parameters
(α = 1,μ = 1), (α = 1.5,μ = 1), and (α = 0.5,μ = 0.1). Solid lines
are given by Eq. (11) with the same parameters. In (a) the total number
of processes is N = 103, whereas in (b) it is only N = 20.

and then become susceptible again. Susceptible individuals
can become infected if they are in contact with infected
neighbors. Except for a few exceptions [27,34,35], epidemic
processes are always considered as Markovian so that, in the
SIS case, infected individuals recover spontaneously at a rate
β and susceptible ones become infected at a rate λ times the
number of infected neighbors. This dynamics undergoes a
phase transition between an absorbing (healthy) phase—where
any infectious outbreak disappears exponentially fast—and
an endemic phase with a sustained epidemic activity. This
transition takes place at a critical value of the effective infection
rate λeff = λ/β that depends on the topology of the contact
network [36–42]. Here we consider the SIS dynamics on top of
the less structured network, the classical Erdös-Rényi random
graph [43]. In this simple model, pairs of nodes out of a
set of N nodes are connected with probability p = 〈k〉/N ,
where 〈k〉 is the average degree of the network. In the
limit N 	 1, this procedure generates a maximally random
graph with a Poisson degree distribution. The critical value
for the effective infection rate in these model networks is
approximately λc

eff = 1/〈k〉 [44]. In the subsequent sections,
we investigate the role of non-Markovian effects.

A. Independent infections

In the non-Markovian case, the time that individuals
remain infected follows the distribution ψrec(τ ), in general
nonexponential. This means that to apply the nMGA, we
have to keep track for each infected individual of the time
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BOGUÑÁ, LAFUERZA, TORAL, AND SERRANO PHYSICAL REVIEW E 90, 042108 (2014)

A B

A B

A B
rule 1 tAB=0

rule 2 tAB=tA

A B rule 1 tAB=0{

0 0.2 0.4 0.6 0.8 1
effective infectious rate, 

eff

0

0.2

0.4

0.6

0.8

1

pr
ev

al
en

ce
, 

st

rule 1, 
rule 1, 
rule 2, 
rule 2, 

FIG. 2. (Color online) Non-Markovian epidemic spreading. Top:
Two possible ways to generate a new active link in the SIS model.
Rules 1 and 2 specify the elapsed time for the newborn active link.
Rule 1 sets this time always to zero, whereas rule 2 assigns to
the newborn active link the elapsed time of individual A. Bottom:
Prevalence of the epidemics at the steady state as a function of the
effective infection rate in Erdös-Rényi networks of size N = 104

and average degree 〈k〉 = 5. Solid lines stand for non-Markovian
dynamics with rule 1 implemented, whereas dashed lines correspond
to rule 2. The red solid curve corresponds to the Markovian case. In
all cases, recovery events are exponentially distributed.

elapsed since he became infected. The infection process is
more involved. In this subsection, we consider that each
active link (connecting a susceptible-infected pair) defines
a statistically independent infection process following the
distribution ψinf(τ ). That is, a susceptible individual connected
to a single infected individual will become infected after a
random time distributed by ψinf(τ ) from the moment the link
became active. If the susceptible individual is connected to
more than one infected neighbor, each active link is considered
as statistically independent so that the infection event will
take place at the time of the first firing event of any of the
current active links. Because the dynamics is non-Markovian,
the infection of a susceptible individual depends not only on
the number of active links (infected neighbors) but on the
elapsed time of each active link, which is, in general, different
for each infected neighbor.

Therefore, the complexity of the infection course is related
to the specific process that leads to the generation of an active
link. Indeed, an active link connecting infected individual A
and susceptible individual B can reach this configuration from
two different scenarios, as illustrated in the top panel of Fig. 2.
In the first one, both A and B are originally susceptible and
individual A becomes infected by one of his neighbors other
than B, generating a new active link. In the second scenario,
both A and B are infected and individual B recovers so that an
active link is equally created. In the first scenario, it is clear
that the active link is new and, therefore, its elapsed time is set
to zero, tAB = 0, we call this “rule 1.” In the second scenario,

we can use again rule 1 and set tAB = 0. However, we could
also argue that infected individual A is the one that makes
the action of infection and, thus, we could also consider that
the elapsed time of the active link is, in this case, the elapsed
time of infected individual A since he became infected, that
is, tAB = tA. We call this “rule 2,” and it is the point of view
taken in Ref. [27].

We first consider the case of Poisson statistics for recovery
events and a Weibull distribution with parameter α for the
infection process. To compare with the Markovian case, we
use as a control parameter a generalization of the effective
infection rate, defined as the ratio between the average recovery
time and the average infection time, λeff = 〈trec〉/〈tinf〉. This
definition reduces to the effective infection rate used in the
Markovian case. Figure 2 shows the epidemic prevalence
(fraction of infected individuals) at the steady state in a
network of size N = 104 and average degree 〈k〉 = 5 as a
function of λeff . As can be seen in the figure (and also reported
in Ref. [27]), non-Markovian statistics modifies the position
of the critical point significantly. However, there are also
important differences between rule 1 and rule 2 for the same
values of α. For α > 1, prevalence for rule 2 is always above
that for rule 1 and vice versa for α < 1. This difference can
be understood by the analysis of the average infection time
of an active link, conditioned to a given elapsed time, that
is, the first moment of the probability density Eq. (2). In the
case of a Weibull distribution, the average time until the next
event is an increasing function of the elapsed time when α < 1,
whereas it is decreasing when α > 1. When a new active link
is generated, its elapsed time is always above zero with rule 2,
whereas it is exactly zero with rule 1. Therefore, the average
infection time with rule 2 is longer or shorter than in the case
of rule 1 whenever α < 1 or α > 1, respectively.

The effect of a non-Poisson recovery time distribution is
much less determinant as compared to the non-Markovian
infection dynamics. Indeed, when using rule 1, we do not find
any noticeable difference with respect to the Markovian case,
whereas there are minor differences when using rule 2 but only
for very heterogeneous recovery time distributions.

B. Cooperative infections

One of the consequences of the “independent infections”
assumption made in the previous subsection is that, for a given
individual, the total infection rate at a given time is the sum of
the instantaneous rates of all her active links at that time. This
is a reasonable assumption when rule 2 is used because, in this
case, the infected node is the one associated with the random
event of infecting the neighbor, whereas the susceptible node
is only a passive actor of the process. However, this is not
the case when rule 1 is in use because, in such a situation,
the susceptible node is the one actively associated with the
random infectious event. A naive explanation of the difference
between these two cases is as follows. For rule 2, we could
imagine the infected node firing imprecisely infective agents
to her neighbor such that the susceptible node would only
become infected after one of these agents hits her. The random
infection time is then given by the random time the infected
node takes to hit her neighbor, a process attributed solely to the
infected node. For rule 1, we could imagine the infected node
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firing with perfect precision to her neighbor, who is endowed
with a protective shield that is destroyed after some exposure
to the infective agent and regenerated once the individual
becomes susceptible again. However, in this case there is no
reason, a priori, to assume the hypothesis of independence
between different active links that could act cooperatively and
nonlinearly to infect the susceptible individual.

To explore this possibility, we consider a simple example
in which the total infection rate of a given susceptible node i

at time t is

λtot,i(t) =
⎡
⎣∑

j

aijnj (t)[λi(tij )]
1
σ

⎤
⎦

σ

, (13)

where aij is the adjacency matrix, nj (t) = 1 if node j is
infected at time t and zero otherwise, and tij is the time the link
i-j has been active. As before, the instantaneous rate is given
by Eq. (12). For σ = 1 we recover the case of independent
infections.

This case can be readily implemented with the nMGA.
Results are shown in Fig. 3. Nonlinear infections have an
important effect on the prevalence of the infection, increasing
it when σ > 1 and decreasing it if σ < 1. In this case, however,
the position of the critical point is not affected. The reason is
that in the low prevalence regime close to the critical point, the

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

pr
ev

al
en

ce
,

st

0 0.2 0.4 0.6 0.8 1

effective infectious rate, 
eff

0

0.2

0.4

0.6

0.8

FIG. 3. (Color online) Cooperative non-Markovian epidemic
spreading. Prevalence of the epidemics at the steady state as a function
of the effective infection rate for the same network as in Fig. 2 in the
case of cooperative infections given by Eq. (13) for different values
of α and σ . Rule 1 is used in all cases.

number of infected neighbors is very small, and thus we are
effectively in the same regime as in the case of independent
infections. It is also possible to implement more complex
nonlinear schemes, such as threshold models for which the
instantaneous infection rate is zero below a given value. In all
these cases, the nMGA can be applied.

V. ASSESSMENT OF THE GENERALIZED GILLESPIE
ALGORITHM ON A SYSTEM OF BIOCHEMICAL

REACTIONS WITH DELAYS

To show the generality and assess the performance of the
nMGA as compared to other existing methods, we apply
our approach to a stochastic system of reactions with time
delays. Time delays account for the non-Markovian nature
of many random processes that play a key role in a wealth
of problems in molecular biology involving biochemical
reactions or transport. For instance, time delays can model
slow processes made of squential multistage reactions that can
induce stochastic oscillations in gene expression [17,23,25].
In neurotransmission, time delays can be related to the trap
of particles in dendritic spines explaining their anomalous
diffusion [45].

This relevance prompted several attempts to adapt Gille-
spie’s algorithm to implement biochemical reactions with time
delays for the analysis of gene regulation [17–21]. When
time delays are independent of the evolution of the system,
the proposed nMGA does not necessarily outperform those
previously proposed methods based on annotated lists of
future events [17,18,20] or Anderson’s modified next reaction
algorithm for systems with delays (algorithm 7 in Ref. [21]).
However, when there is a coupling between the distribution
of the time delays and the state of the system, none of
the previously developed methods can be straightforwardly
applied. The reason is that those methods assume that delay
times must be chosen at the moment of the initiation of each
reaction, which is clearly not possible if delays depend on the
changing state of the system. In Appendix C, we show how to
modify Anderson’s algorithm to deal with this more general
case, although, as we shall see below, it is slower than the
nMGA.

As an example, we consider the following stochastic
reaction system, which can serve as a model for gene regulation
with delayed autoinhibition:

∅
g(nP )
=⇒
τ

M, M

βP

−→ M + P, M

γM

−→ ∅, P

γP

−→ ∅. (14)

Here M represents some messenger RNA (mRNA) molecule
and P is the corresponding translated protein. The generation
of mRNA is initiated like a Poisson process of rate g(nP )
depending on the instantaneous number of proteins nP present
at generation time, but it is completed only after a delay
time τ , drawn from a given probability distribution. Note
that, in our formulation, this leads to the consideration of
two types of processes: the initiation of the generation of
a mRNA molecule, which has an exponential interevent
time with average 1/g(np), and the completion of this
generation, which has an interevent time distribution equal
to the delay distribution of the process. Translation of
mRNA molecules to proteins and spontaneous degradation
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of mRNA and proteins are modeled by Poissonian processes
with rates βP , γM , and γP , respectively. A version of this
system was analyzed, for example, in Refs. [16,18,22–26]. In
particular, Ref. [22] considers uniformly distributed delays
in the range (10.7,26.7), βP = 1,γM = γP = 0.03, and a
Hill function g(nP ) = NαM/{1 + [nP /(NP0)]h}—with αM =
1,P0 = 10,h = 4.1, and variable size N—to reflect the fact
that the presence of protein molecules has a negative feedback
on mRNA generation.

As mentioned before, the nMGA is particularly suitable
when time delays are coupled to the macroscopic evolution
of the system. This is the case, for instance, if we consider
a slightly modified gene regulation model where the time
required for the transcription of mRNA is affected by the total
amount of mRNA being transcribed, nM∗ , or already present
at the time, nM , a likely biological assumption based on the
fact that resources needed for mRNA transcription, such as
nucleotides or ATP energy, are finite.

More specifically, we consider a system-coupled delay
model that only differs from the previous one in the distribution
of time delays τ . Instead of the uniform distribution, we
choose a Weibull distribution with scale parameter μ−1 =
μ−1

0 [1 + v(nM∗ + nM )/N] and μ0 = 0.125, v = 0.5. This
means that the instantaneous rate of an ongoing process is
modified every time the system changes, which implies that
the time a reaction takes to complete (the delay) is not defined
when the reaction starts. We use this non-Markovian version
of the model to compare the performance of the nMGA with
that of the modified Anderson’s algorithm in Appendix C.
As shown in Fig. 4 (top), the computational time required by
both algorithms scales as N2. However, nMGA is a factor
≈3.7 times faster for α = 0.5 and ≈9.5 times faster for α = 5.
We note, furthermore, that the adapted Anderson’s algorithm
works relatively well in this case because the cumulative
distribution of a Weibull distribution can be expressed in terms
of elementary functions. When this is not possible, Anderson’s
algorithm becomes much slower while the efficiency of nMGA
remains the same. In Fig. 4 (bottom), we also show the
autocorrelation function for the temporal evolution of the
number of proteins in the stationary state. As α increases,
taking values between 0.5 and 100, the distribution of time
delays becomes markedly more peaked around the mean, and,
as a consequence, the sequence of oscillations, with decaying
amplitude and wave cycle marked by the average delay,
becomes more pronounced in the autocorrelation function.
Interestingly, as the distribution of time delays drifts away
from the exponential becoming more bursty, these oscillations
damp out to eventually disappear.

To finish this section, let us comment on a recent and
innovative approach proposed in Ref. [22], which replaces the
master equation by an effective nonlinear integrodifferential
Langevin equation amenable to numerical treatment. The
running time of the numerical integration is independent of the
system size, so, in principle, this method should be preferred
over other stochastic methods when the system size is very
large (also in this limit, the error of the method tends to zero).
This will not be the case, however, if one is interested in the
highest frequencies of the system, which scale linearly with
the system size. Probing such a high-frequency domain would
make it necessary to increase the resolution of the discretiza-
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FIG. 4. (Color online) Performance of the nMGA and modified
Anderson’s algorithms for the gene regulation model Eq. (14) with
time delays coupled to the evolution of the system. Top: Scaling of
computational times required to simulate 104 physical time units,
starting with nM∗ = 0 and the steady-state values of np and nM for
α = 5. Bottom: Autocorrelation function, normalized by system size,
for the temporal evolution of the number of proteins in the stationary
state as a function of the shape parameter α of the time-delay
distribution, for N = 100. In both cases, the delays follow a Weibull
distribution with the parameters detailed in the main text.

tion of the integrodifferential equation accordingly, with the
corresponding increase in computing time. In addition, this
approach was developed to study well-mixed systems and,
thus, it cannot be applied directly to networked populations.

VI. CONCLUSIONS

Models of dynamical processes in complex systems often
assume that characteristic random events occur continuously
and independently at constant rates. However, this assumption
fails for many real systems, which cannot be correctly
described unless memory effects such as time delays, aging, or
bursty dynamics are accounted for using non-Markovian tran-
sitions. We have introduced an exact and general framework
that can generate statistically correct realizations for systems
of non-Markovian discrete stochastic processes. In the limit
of a large number of processes, we provide an approximated
and simple simulation algorithm that, quite surprisingly, works
exactly like the original Gillespie method, with the difference
being that instantaneous rates of events depend on the time
elapsed since the event last took place. Compared with other
methods existing in the literature, our algorithm is not always
the fastest. However, it is the most general because it can be
implemented very easily in cases (such as delays coupled to
the evolution of the system) in which other algorithms do not
work or need adapted versions.

Beyond the proven validity and efficiency of the algorithm,
our results unveil the drastic effects that very subtle differences
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in the modeling of non-Markovian processes have on the global
behavior of complex systems, with important implications
for their understanding and prediction. This turns out to be
a central question in many different fields, since evidence
shows that non-Markovian dynamics are the rule rather than
the exception. For instance, on the Internet information is
injected in bursts, and packet flow arrival times can experience
propagation delays due to congestion and other effects. In
human dynamics, bursty behavior affects the way information
is generated and spread. In gene regulatory networks, intrinsic
stochastic fluctuations may lead to the occurrence of oscil-
lations and other phenomena not observed in Markovian or
deterministic analogs. Beyond these examples, the potential
range of applications is countless. For all of them, the correct
modeling of non-Markovian events is crucial, and minimal
variations can have drastic effects on their global behavior.
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APPENDIX A: SIMULATION DETAILS FOR
THE SIS DYNAMICS

To apply the nMGA to the SIS model with independent
infections, we define two lists. At any given time, the first list
contains all infected nodes along with their elapsed times ti

and rates λrec(ti) = αrecμ
αrec
rec t

αrec−1
i , to be used in Eq. (9) in the

main text. The second list contains all active links annotated
with their elapsed times tij and rates λinf(tij ) = αinfμ

αinf
inf t

αinf−1
ij .

Without loss of generality, we set μrec = 1 and change μinf to
modify the effective infection rate. We initialize the simulation
with all nodes infected so that the list of active links is initially
empty. Then, at each step of the simulation we perform the
following steps:

(1) Choose the next event out of the two lists with the
probability given by Eq. (9) in the main text, ignoring events
with elapsed time equal to zero.

(2) Draw a random time increment τ from the exponential
distribution Eq. (10) in the main text, τ = − ln(u)/Nλ({tk}),
with u a uniform random variable in the interval (0,1), and
update the current time as

t → t + τ.

(3) (a) If the chosen event is the recovery of infected
node i,

(i) remove i from the list of infected nodes,

(ii) remove also from the list of active links the links
between i and his susceptible neighbors,

(iii) add to the list of active links all the links
connecting i with his infected neighbors. These new
active links are given elapsed times according to rule 1
or rule 2, depending on the particular choice.
(b) If the chosen event is the infection of node i,

(i) add node i to the list of infected nodes with an
elapsed time equal to zero,

(ii) remove from the list of active links the links
between i and his infected neighbors,

(iii) add to the list of active links all the links
connecting i with his susceptible neighbors. These new
active links are given elapsed times equal to zero.

(4) Update the elapsed times of the rest of the elements of
the lists as

ti = ti + τ and tij = tij + τ

and go to step 1. In practice, this step can be avoided if we
annotate the elements of the lists with their birth times. Elapsed
times can then be evaluated at runtime as current time minus
birth time.

In the case of cooperative infections, we generate a new
list containing all susceptible nodes annotated with the rates
in Eq. (13). Then, the event in step 1 is chosen from the list of
infected nodes and the list of susceptible ones.

APPENDIX B: SIMULATIONS DETAILS FOR DELAYED
REACTIONS

We give here the details for the reaction system defined
by Eq. (14) with delays depending on the state of the system.
During the course of the simulation, we keep track of the
number of proteins, nP , mRNA’s, nM , and a list of the mRNA’s
that have initiated but not yet completed transcription, nM∗ ,
annotated with their elapsed times since transcription started,
ti , and corresponding rates, λ(ti) = αμαtα−1

i , where μ depends
on the current state of the system as μ = μ0/[1 + v(nM∗ +
nM )/N ]. There are five types of events. (i) The generation of
one protein at rate nMβP , (ii) the degradation of one protein at
rate nP γP , (iii) the degradation of one mRNA at rate nMγM ,
(iv) the initiation of transcription of a new mRNA, at a rate
g(nP ), and (v) the completion of the transcription of a mRNA,
at a rate αμαtα−1

i . Then, at each time step of the simulation:
(1) Choose the next event out of these five possibilities

according to the probability given by Eq. (9) in the main
text, ignoring mRNA’s that just started transcription, i.e., with
elapsed time equal to zero. The normalization constant in
the denominator of Eq. (9) is given by Nλ({tk}) = nM (βP +
γM ) + nP γP + g(nP ) + ∑

i λ(ti).
(2) Draw a random time increment τ from the exponential

distribution Eq. (10) in the main text, and update current time
as

t → t + τ.

(3) Update the elapsed times of all mRNA’s in the process
of being transcribed in the list,

ti = ti + τ,

except for the newly created one, if any, that is set to zero.
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(4) If needed, update the number of molecules nP ,nM,nM∗

and the list of mRNA’s in the process of being transcribed and
go step 1.

APPENDIX C: ADAPTATION OF ANDERSON’S MODIFIED
NEXT REACTION METHOD FOR GENERAL
NONEXPONENTIAL INTEREVENT TIMES

Below, we detail how to adapt Anderson’s modified next
reaction method to general nonexponential interevent times
(including delays coupled to the state of the system). In
Ref. [21], it is explained how to use the modified next reaction
method (algorithm 3 of Ref. [21]) in systems in which the
instantaneous rates depend explicitly on time. In the problem
we focus on here, the instantaneous rate of a reaction depends
on the elapsed time since this reaction last fired. Next, we give
a brief explanation of the main ideas behind the adaptation of
Anderson’s modified next reaction algorithm to treat this case.
For details on the original Anderson’s method, the reader is
referred to [21].

As a simple example, we consider a system with a single
species. The number of particles of this species at time t is
n(t). This number changes by vi each time reaction i fires, and
it does so with an instantaneous rate ri[n(t),t − ti], where ti is
the last time (before t) that reaction i fired. The evolution of n

admits a representation using Poisson processes [21]:

n(t) = n(0) +
∑

i

viYi

(∫ t

0
ri(n(s),s − ti)ds

)
, (C1)

where Yi are independent unit rate Poisson processes (i.e.,
P [Yi(t) = m] = tm

m!e
−t , Yi(t + 
) = Yi(t) + Y (
)). Note that

Yi(t) is a stochastic process with Yi(0) = 0, which increases by
1 at random times, and that the intervals between consecutive
increment times are independent random variables exponen-
tially distributed with unit average. Let us now assume that the
whole process starts at time t = 0, so that ti = t = 0,∀ i. The
time at which reaction i will next fire, t′i , is the solution of∫ t′i

0
ri(n(s),s − ti)ds = Pi, (C2)

with Pi an exponential random variable with unit average (the
“internal time” of reaction i). Next reaction methods [21,46]
are based on the fact that these “internal times,” Pi , are random
variables independent of the state of the system, and the actual
firing times and the subsequent changes in the state of the
system can be obtained through (C2) once the Pi’s are set.

From a computational perspective, (C2) is not yet useful,
because it requires knowledge of n(t) from the current time
(t = 0) until the time of the next firing of reaction i, t′i .
However, Eq. (C2) will be valid for the reaction that fires
first, once n(s) is replaced with n(0), since n(s) = n(0) until
the first process fires. So one can obtain the time of the next
reaction, t , by solving (C2) with n(s) = n(0) for each reaction,
and then setting t = mini{t′i}. One can then update the state of
the system (n) according to the reaction that fired. The time
of the next firing of a reaction i that was not the first firing is
given by

∫ t′i

0
ri(n(s),s − ti)ds =

∫ t

0
ri(n(0),s − ti)ds

+
∫ t′i

t

ri(n(t),s − ti)ds = Pi, (C3)

which again is valid only if reaction i is the one first
firing after t . Defining the “elapsed internal time” Ti as
Ti ≡ ∫ t

0 ri(n(0),s − ti)ds, we obtain an equation for t′i that
only uses the value of n(t) at the current time (plus the internal
time and the elapsed internal time):

∫ t′i

t

ri(n(t),s − ti)ds = Pi − Ti. (C4)

The process can be carried on iteratively.
The final algorithm, then, proceeds as follows:
(1) Initialize: set t = 0, ti = 0, Ti = 0. The state of the

system is given by n.
(2) Set the “internal times” for the firing of next processes:

Pi = ln(1/ui) with ui independent random numbers uniformly
distributed in the interval (0,1).

(3) Obtain the tentative “physical times” for the next firing
of the reactions, t′i , solving Eq. (C4).

(4) Obtain the actual time of the firing of the next reaction,

 = mini{t′i}; let μ be the index of the process that actually
fires.

(5) Update the “elapsed internal times,” Ti = Ti +∫ 


t
ri(n,s − ti)ds; set a new internal time for the reaction that

fired, Pμ = Pμ + ln(1/uμ).
(6) Update the time and last firing time of reaction μ,

t = 
; tμ = t .
(7) Update the state of the system (n); update the rate

functions ri = ri(n).
(8) Go to step 3 or quit.
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