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Abstract:  This paper proposes the use of neural networks as a tool for studying navigation within 
virtual worlds. Results indicate that the network learned to predict the next step for a given 
trajectory. The analysis of hidden layer shows that the network was able to differentiate between 
two groups of users identified on the basis of their performance for a spatial task. Time series 
analysis of hidden node activation values and input vectors suggested that certain hidden units 
become specialised for place and heading, respectively. The benefits of this approach and the 
possibility of extending the methodology to the study of navigation in Human Computer 
Interaction applications are discussed.    
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1   Introduction 
This study presents the preliminary results of a 
connectionist model of human navigation 
within a Virtual Environment (VE). The 
purpose of this work is to extract a spatial 
grammar underlying spatial knowledge 
acquisition.  
     Environmental psychology provides an 
empirical basis for a better understanding of 
how humans perceive and understand the 
space. 
     The work described here confirms the idea 
that acquiring an internal representation of the 
environment is a very complex process 
involving primarily landmark identification 
and understanding of spatial layout 
configuration. These two basic procedures are 
well known as route-based knowledge and 
survey knowledge [8]. Without 
underestimating the role of traditional 
methods, we propose the use of neural 
networks as an alternative tool for studying 
navigation within virtual worlds.  

Neural networks have proven particularly 
suited to finding patterns in large amounts of 
complicated and imprecise data, and detecting 
trends that are too complex to be noticed by 
humans [2]. While neural networks have been 
fruitfully exploited by artificial intelligence 

researchers, their adoption within HCI has 
been limited. They have been primarily 
applied to pattern recognition [16]. Finlay 
identified four areas of HCI, which involve 
pattern recognition problems, such as task 
analysis and task evaluation, natural 
interaction methods such as gesture, speech, 
handwriting, and adaptive interfaces [5].  

Neural networks provide a very powerful 
toolbox for modelling complex high-
dimensional non-linear processes [13]. ANNs 
have many advantages over the traditional 
representational models. In particular, the 
distributed representations they employ make 
them amenable to parallel processing, robust 
to noise, and give them a certain degree of 
biological plausibility [10]. We consider that 
at least part of these strengths can be 
harnessed to model user’s behaviour in terms 
of spatial knowledge acquisition.  

This research is part of an ongoing program 
applying neural networks in modelling user’s 
spatial behaviour within VEs.  

 
2   Navigation within VEs 
Virtual environments (VE) have become a rich 
and fertile arena for investigating spatial 
knowledge. Within the VE, the user’s set of 
actions is restricted, consisting mainly of 
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navigation, locomotion, object selection, 
manipulation, modification and query [6]. As 
Sayers (2000) observed navigation has been 
found to be central to the usability of 
interfaces to VEs on desktop systems [25]. 
VEs offer the context for training and 
exploration, enabling the replacement of 
training and exploration within the physical 
world. This proves partially attractive when 
experiencing the real world is expensive, 
dangerous or hard to be achieved [3].  

Evidence of significant similarities in the 
acquisition of spatial knowledge from real and 
virtual environments has been identified [11]. 
A further advantage consists of their powerful 
tractable characteristic [1], which enables 
accurate spatio-temporal recording of users’ 
trajectory within the virtual space. Attempts to 
understand spatial behaviour in both real and 
artificial worlds were primarily concerned 
with highlighting the symbolic representation 
of spatial knowledge. 

 
 

2.1   Symbolic Models of Navigation  
The study of navigation in the area of HCI has 
developed mostly in the field of cognitive 
modelling, benefiting from inputs provided by 
both environmental psychology and geography 
[14]. Several models where described by 
Kuipers [12] and Darken [3]. Modelling of 
spatial knowledge has constituted a central 
research theme for the last four decades. 
Golledge elegantly presented different models 
of declarative knowledge acquisition, together 
with their relevant applications in the area of 
spatial cognition [7]. Kuipers developed 
several computational models for navigation, 
underlying the procedural knowledge 
embedded in the spatial representations [12]. 
The basic idea resides in the individuals’ set of 
interactions with the environment, which 
facilitates a structured storage of perceptual 
experiences. These memorized experiences 
would enable users to build a more generalized 
structure for exhibiting an emergent spatial 
behaviour unperformed before [7].  

 
 

2.2   Connectionist Models of Navigation 
Previous studies have shown that recurrent 
neural network can predict both circular and 
figure eight trajectories [4],[9],[18],[21],[26]. 
However, due to the fact that the figure eight 
trajectory crosses itself, the training was more 

difficult for this type of trajectory. In our case, 
the trajectories covered by users are more 
complex than a circle or figure eight, even 
though some of them resemble a circular 
shape.  
 
 
3   Methodology 
Research in the area of navigation within VEs 
has been generally focused on large-scale 
virtual worlds [3]. In this study we utilized 
ECHOES1 [16], as an experimental test-bed. It 
is a virtual reality system, which offers a 
small-scale world, dense, static and with a 
consistent structure. Adopting a physical 
world metaphor, the ECHOES environment 
comprises a virtual multi-story building, each 
one of the levels containing several rooms: 
conference room (Fig.1), library (Fig.2), lobby 
etc.  

 

 
Fig. 1.  Virtual Conference Room 

 

 
Fig. 2.  Virtual Library 

 
The present study captures the spatial 
behaviour of users exploring an unfamiliar 
VE. Users can navigate from level to level 
using a virtual elevator. The rooms are 
furnished and associated with each room are a 
set of user functions.  

A sample of 30 postgraduates in the 
Computer Science Department of University 
College Dublin was asked to perform two 

                                                           
1 ECHOES (European Project Number 

MM1006) is partially founded by the Information 
Technologies, Telematics Application and 
Leonardo da Vinci programmes in the framework 
of Educational Multimedia Task Force. 



tasks within the virtual world, namely 
exploration and searching. In order to gain 
familiarity with the environment and learn 
movement control, the subjects were asked to 
look for a particular object within the virtual 
building for about 20 minutes. This 
exploratory task provided the primary data for 
the neural network approach. Furthermore, 
subjects were asked to find a particular room 
in the virtual building, namely the library. We 
considered the time and length of trajectory 
involved in this search task as performance 
indicators. Based on these, we identified the 
quality of spatial knowledge acquisition and 
the efficiency of the exploratory strategy.  

A comprehensive set of data consisting of 
users’ positions was recorded throughout the 
experiment. Each movement greater than half 
a virtual meter, and each turn greater than 30o 
were recorded.  

We present a connectionist simulation to 
test whether a network can build a cognitive 
map as an internal representation of 
environmental information [8] in terms of both 
landmarks and configuration of the spatial 
layout. The basic idea is that an input vector 
consisting of current Cartesian coordinates 
together with information about the nearest 
landmark is sufficient to induce the network to 
form internal abstractions to predict the next 
position. To test our hypothesis, an Elman-
style simple recurrent neural network was used 
to learn the trajectory and to predict the next 
step. The implementation was carried out by 
using Stuttgart Neural Network Simulator 
(SNNS). The network architecture [4] is 
presented in Figure 3 and consists of 6 input 
nodes, 12 hidden nodes, 12 context nodes and 
6 output nodes.  

The network input consists of a sequence of 
users’ trajectories. At each time step t, an input 
vector is presented consisting of user’s 
position, orientation angle, distance to the 
nearest landmark (the distance to the nearest 
point of the landmark) and its associated 
position (coordinates of the centre of the 
landmark).  For this simulation we considered 
only the trajectories performed on the ground 
floor of virtual building. Figure 4 presents an 
overhead image of this level. After each 
trajectory was entered, an input representing 
“reset” is presented, for which the network is 
supposed to zero out the outputs [15]. The 
output pattern represents the input vector of 

time t+1. All the input values were 
normalized. 
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Fig. 3  Network Architecture  Fig. 4 Ground Floor 
 

Using the backpropagation learning 
procedure [4] the network was taught to 
predict for each current position the next 
position in time.  

At this stage of our work, we expanded the 
notion of landmark to any feature added to 
spatial layout. Therefore, apart from any piece 
of furniture, we considered also the choice 
points such as doors and lift entrance. 
Identifying which ones, among these features, 
prove to be salient and able to capture 
attention – being thus an authentic landmark – 
is a task to be solved by the network.  

We divided randomly the entire set of data 
into five parts, using three of them for training, 
one for validation and one for testing. The 
network was trained for 1000 epochs, with 24 
trajectories composed of 4668 input vectors. 

Two groups of users were identified on the 
basis of their performance for search task.  
Good users (top 20%) and Poor user (bottom 
20%). Trajectories followed by these users 
constituted our testing set, comprising 12 
trajectories of 1573 input vectors. The average 
trajectory length was 160 vectors. The learning 
rate was 0.001, the initial weights set within a 
range of 0.5 and the momentum was 0.  

 
 

4   Results   
 
4.1   Network Performances 
The imprecision of floating point arithmetic 
led us to the presumption that a prediction is 
correct not only if it equals the expected value, 
but also if it is “close enough” to it. Therefore, 
we consider that the NN produces an error if 
the Euclidean distance between the vector 
predicted by the network and the expected 
vector is above a given threshold. This 
threshold was set up for each element of the 



vector to: 1 virtual meter for the x, y 
coordinates, 30 degrees for rotation and 2.5 
virtual meter for distance estimation.   

A more conservative performance criterion 
was defined, which considers that an error 
occurs when at least one of the elements of the 
vector is above the threshold. 

In Table 1 we present the results of testing 
the network, obtained by computing the 
Euclidean distance between the output vector 
predicted by the network and the expected 
output vector.  

 
Input description Percent    

Correct 
User’s next position – X coord. 97.13%
User’s next position – Y coord. 92.30%

User’s next orientation  - heading 86.90%
Distance to next nearest landmark 99.87%
Nearest landmark pos. – X coord. 90.27%
Nearest landmark pos. – Y coord. 86.77%
Table 1  Prediction accuracy of each input 

element based on Euclidean distance 
 
As can be seen, the network generalizes 

well for all the input elements. However, for a 
prediction to be correct all the input elements 
should simultaneously be within specified 
limits. With respect to the composite criterion 
of accuracy, the network still performs 
adequately, the success rate being 67.57% 
[23],[24]. 

Knowledge embedded into a trained NN is 
stored in its weights and hidden nodes [19]. 
One way to study this, and a first step in the 
rule extraction process, is to perform a cluster 
analysis of hidden nodes activation values. 
 
 
4.2   Analysis of Hidden Layer 
The prediction performance obtained by the 
RNN support the idea that it successfully 
learnt the regularities underlying the training 
data. Understanding what the network learnt 
can be achieved by analysing the internal 
representation acquired by the network. A 
straightforward way of doing this is by cluster 
analysis of the hidden node activations [15]. 
Therefore, the hidden node activation values 
were recorded after each testing input vector 
has been presented to the network. K-Means 
clustering analysis performed on these values 
revealed two clusters [20].  

A cluster membership was assigned to each 
vector and a series of statistical tests were 
performed in order to associate meaning to the 
clusters. Firstly we looked at the errors within 
each clusters.  

Within cluster 1 there are significantly more 
correct predictions than in cluster 2: 56.7% 
versus 43.3%, χ(1) = 32.44, p < 0.001. If the 
number of errors differs between the two 
clusters, we conjectured that the clusters 
should be related to the user’s performance. 
There are indeed significantly more Good 
users in cluster 1 than in cluster 2: 58.2% 
versus 41.8%, χ(1) = 29.85, p < 0.001.  

The percentage of errors within each cluster 
was further analysed on the basis of the error 
associate with each element from the vector. 
The errors were considered as being related to 
translation, rotation or landmark prediction.  

We found no significant difference with 
respect to the number of errors within each 
cluster, when errors were generated by wrong 
prediction of user’s coordinates (x, y) or for 
the x coordinate of the centre of the landmark. 
The difference in number of errors was related 
to the inaccurate prediction of the y coordinate 
of the centre of the landmark (χ(1) = 39.10, p 
< 0.001) and of rotation angle (χ(1) = 11.24, p 
< 0.01). Significantly more of these errors had 
occurred within cluster 2.  

We tried to identify what type of events 
characterizes the clusters and whether there is 
difference between them on this respect. 
Cluster 1 groups hidden neurons significantly 
more respondent to the input vectors 
representing Rotations and Landmarks than 
Translations, χ(2) = 10.83, p< 0.01. 

The analysis of internal representation 
acquired by the NN performed through cluster 
analysis of hidden nodes has limitations. It 
does not take into account the temporal 
dimension and it is not performed in the 
context of input and output vectors, of which 
the hidden nodes are intrinsically related. 
These limitations suggest that apart of 
clustering analysis one should employ other 
techniques to grasp the temporal dynamic and 
also to broaden the context of analysis.   

Since all the data related to a NN are 
ordered in time, we propose the use of time 
series analysis. A time series is a sequence of 
observations which are ordered in time [27]. 
The elements within both the input and output 
vectors represent time series and moreover the 



hidden nodes activation values represent a 
time series as well.   
4.3   Hidden Nodes Specialisation 
The simplest analysis of the relationship 
between two time series is the lagged 
correlation, performed after removing any 
serial dependency within them [27]. The cross-
correlations coefficients have been computed 
at lag 30, between each element of the input 
vector and the hidden nodes activation values. 
The highest correlation and the associated lag 
was recorded. For each element of input vector 
the cross-correlation equal or higher than 0.70 
has been retained and the associated hidden 
node was considered as specialised for that 
particular input element (firing for it).  
The Figure 5 shows one element of the input 
vector e.g. rotation, together with the 
associated hidden node (H10), which presents 
the highest activity values.  
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Fig. 5a Examples of hidden nodes activity 
patterns together with the associated values for 
the input and predicted elements of the 
vectors. 
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Fig.5b 

 
As one can see the activity pattern of the 
hidden nodes, in each case matches closely the 
one of the input elements for which it fires. 
The examples are associated with a trajectory 
performed by a poor user and a good user 
respectively.  

For each input element, the specialised 
hidden neurons are as follows: x coordinate - 
H1, H5, H7, for y coordinate - H4, H8, H11, 
for rotation angle - H3, H10, H12, for distance 
to the nearest landmark – none, for landmark 
centre coordinate x - H5, H7 and for landmark 
centre coordinate y- H8. It is obvious that the 
subjects’ position and the landmarks’ position 
are represented by similar hidden neurons, 
though the former requests more hidden nodes. 
The rotation angle requires a completely 
different set of hidden nodes. 

To conclude, the time series analysis 
consisting of lag correlation between input 
vectors and hidden nodes activation values 
revealed two groups of hidden neurons, which 
appear to be highly sensitive to the changes in 
input elements related to places and 
respectively to heading or orientation. In other 
words, the analysis of the representations in 
the hidden layer suggested that the distinct 
groups of hidden units become specialised for 
place and direction [17]. 

 
 

5   Conclusions 
The results have been obtained through a 
neural network simulation of human 
navigation behaviour performed within a VE. 
The main purpose of the simulation consisted 
of motion prediction and accordingly 
understanding of such behaviours. The 
preliminary findings proved promising, 
indicating that the network not only learnt to 
predict the next step for a given trajectory, but 
the prediction is better for users performing 
better and therefore employing good 
navigational strategies. The network predicted 
correctly the next position together with its 
nearest landmark at a rate of 67.57%.  

The cluster analysis of hidden nodes 
highlighted that the networks identified two 
groups of input vectors which represent 
several significant differences. Cluster 1 is the 
one for which the prediction is significantly 
better, and therefore, unsurprisingly, is 
associated with input vectors belonging to 
Good users rather than Poor users. The higher 



number of errors in prediction appearing in 
Cluster 2 are mainly due to the inaccurate 
prediction of the of rotation angle. The main 
conclusion is that NN encounters difficulties 
in learning the rotation behaviour of Poor 
users. Future work should be done in order to 
understand which aspects differentiate 
rotations performed by Good users, aspects 
whose regularity seems to be understood by 
the network.  

This simulation has not been concerned 
with the biological plausibility of human 
navigation behaviour. However, a closer 
analysis of hidden nodes suggests a 
specialisation of hidden neurons, specialisation 
that resembles the neurons organisation within 
the hippocampus [17] [22]. The two groups of 
neurons whose firing patterns correlate 
dynamically with the elements of the input 
vector, could be associated with the place and 
heading cells respectively. This is an outcome 
which confirms the validity of our time series 
analysis as methodological approach.   

Using neural networks as a tool in studying 
navigation can be beneficial for user 
modelling in the area of spatial knowledge 
acquisition. Permitting a comparative analysis 
between efficient and inefficient navigational 
strategies, this methodology could suggest 
how VEs might be better designed. Based on 
these results further work will be focused on 
assisting new users, to improve their spatial 
abilities in exploring a new virtual 
environment. By predicting the user’s 
following trajectory, pertinent advice could be 
provided to reduce its offset from the desirable 
“good” trajectory. Thereafter this guidance 
could improve user exploration. Alternatively, 
a real-time dynamic reconstruction of the VE 
could assist the users in their tasks.  
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