14 research outputs found

    Converging Medial Frontal Resting State and Diffusion Based Abnormalities in Borderline Personality Disorder

    Get PDF
    Background The psychological profile of patients with borderline personality disorder (BPD), with impulsivity and emotional dysregulation as core symptoms, has guided the search for abnormalities in specific brain areas such as the hippocampal-amygdala complex and the frontomedial cortex. However, whole-brain imaging studies so far have delivered highly heterogeneous results involving different brain locations. Methods Functional resting-state and diffusion magnetic resonance imaging data were acquired in patients with BPD and in an equal number of matched control subjects (n = 60 for resting and n = 43 for diffusion). While mean diffusivity and fractional anisotropy brain images were generated from diffusion data, amplitude of low-frequency fluctuations and global brain connectivity images were used for the first time to evaluate BPD-related brain abnormalities from resting functional acquisitions. Results Whole-brain analyses using a p = .05 corrected threshold showed a convergence of alterations in BPD patients in genual and perigenual structures, with frontal white matter fractional anisotropy abnormalities partially encircling areas of increased mean diffusivity and global brain connectivity. Additionally, a cluster of enlarged amplitude of low-frequency fluctuations (high resting activity) was found involving part of the lefthippocampus and amygdala. In turn, this cluster showed increased resting functional connectivity with theanterior cingulate. Conclusions With a multimodal approach and without using a priori selected regions, we prove that structural and functional abnormality in BPD involves both temporolimbic and frontomedial structures as well as their connectivity. These structures have been previously related to behavioral and clinical symptoms in patients with BPD

    NRN1 Gene as a Potential Marker of Early-Onset Schizophrenia: Evidence from Genetic and Neuroimaging Approaches

    Get PDF
    Included in the neurotrophins family, the Neuritin 1 gene (NRN1) has emerged as an attractive candidate gene for schizophrenia (SZ) since it has been associated with the risk for the disorder and general cognitive performance. In this work, we aimed to further investigate the association of NRN1 with SZ by exploring its role on age at onset and its brain activity correlates. First, we developed two genetic association analyses using a family-based sample (80 early-onset (EO) trios (offspring onset ≤ 18 years) and 71 adult-onset (AO) trios) and an independent case control sample (120 healthy subjects (HS), 87 EO and 138 AO patients). Second, we explored the effect of NRN1 on brain activity during a working memory task (N-back task; 39 HS, 39 EO and 39 AO; matched by age, sex and estimated IQ). Different haplotypes encompassing the same three Single Nucleotide Polymorphisms(SNPs, rs3763180 rs10484320 rs4960155) were associated with EO in the two samples (GCT, TCC and GTT). Besides, the GTT haplotype was associated with worse N-back task performance in EO and was linked to an inefficient dorsolateral prefrontal cortex activity in subjects with EO compared to HS. Our results show convergent evidence on the NRN1 association with EO both from genetic and neuroimaging approaches, highlighting the role of neurotrophins in the pathophysiology of SZ

    Association between Radiologists' Experience and Accuracy in Interpreting Screening Mammograms

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Radiologists have been observed to differ, sometimes substantially, both in their interpretations of mammograms and in their recommendations for follow-up. The aim of this study was to determine how factors related to radiologists' experience affect the accuracy of mammogram readings.</p> <p>Methods</p> <p>We selected a random sample of screening mammograms from a population-based breast cancer screening program. The sample was composed of 30 women with histopathologically-confirmed breast cancer and 170 women without breast cancer after a 2-year follow-up (the proportion of cancers was oversampled). These 200 mammograms were read by 21 radiologists routinely interpreting mammograms, with different amount of experience, and by seven readers who did not routinely interpret mammograms. All readers were blinded to the results of the screening. A positive assessment was considered when a BI-RADS III, 0, IV, V was reported (additional evaluation required). Diagnostic accuracy was calculated through sensitivity and specificity.</p> <p>Results</p> <p>Average specificity was higher in radiologists routinely interpreting mammograms with regard to radiologists who did not (66% vs 56%; p < .001). Multivariate analysis based on routine readers alone showed that specificity was higher among radiologists who followed-up cases for which they recommended further workup (feedback) (OR 1.37; 95% CI 1.03 to 1.85), those spending less than 25% of the working day on breast radiology (OR 1.49; 95% CI 1.18 to 1.89), and those aged more than 45 years old (OR 1.33; 95% CI 1.12 to 1.59); the variable of average annual volume of mammograms interpreted by radiologists, classified as more or less than 5,000 mammograms per year, was not statistically significant (OR 1.06; 95% CI 0.90 to 1.25).</p> <p>Conclusion</p> <p>Among radiologists who read routinely, volume is not associated with better performance when interpreting screening mammograms, although specificity decreased in radiologists not routinely reading mammograms. Follow-up of cases for which further workup is recommended might reduce variability in mammogram readings and improve the quality of breast cancer screening programs.</p

    Cannabis Use and Endocannabinoid Receptor Genes: A Pilot Study on Their Interaction on Brain Activity in First-Episode Psychosis

    No full text
    The role of both cannabis use and genetic background has been shown in the risk for psychosis. However, the effect of the interplay between cannabis and variability at the endocannabinoid receptor genes on the neurobiological underpinnings of psychosis remains inconclusive. Through a case-only design, including patients with a first-episode of psychosis (n = 40) classified as cannabis users (50%) and non-users (50%), we aimed to evaluate the interaction between cannabis use and common genetic variants at the endocannabinoid receptor genes on brain activity. Genetic variability was assessed by genotyping two Single Nucleotide Polymorphisms (SNP) at the cannabinoid receptor type 1 gene (CNR1; rs1049353) and cannabinoid receptor type 2 gene (CNR2; rs2501431). Functional Magnetic Resonance Imaging (fMRI) data were obtained while performing the n-back task. Gene × cannabis interaction models evidenced a combined effect of CNR1 and CNR2 genotypes and cannabis use on brain activity in different brain areas, such as the caudate nucleus, the cingulate cortex and the orbitofrontal cortex. These findings suggest a joint role of cannabis use and cannabinoid receptor genetic background on brain function in first-episode psychosis, possibly through the impact on brain areas relevant to the reward circuit

    Converging Medial Frontal Resting State and Diffusion Based Abnormalities in Borderline Personality Disorder

    No full text
    Background The psychological profile of patients with borderline personality disorder (BPD), with impulsivity and emotional dysregulation as core symptoms, has guided the search for abnormalities in specific brain areas such as the hippocampal-amygdala complex and the frontomedial cortex. However, whole-brain imaging studies so far have delivered highly heterogeneous results involving different brain locations. Methods Functional resting-state and diffusion magnetic resonance imaging data were acquired in patients with BPD and in an equal number of matched control subjects (n = 60 for resting and n = 43 for diffusion). While mean diffusivity and fractional anisotropy brain images were generated from diffusion data, amplitude of low-frequency fluctuations and global brain connectivity images were used for the first time to evaluate BPD-related brain abnormalities from resting functional acquisitions. Results Whole-brain analyses using a p = .05 corrected threshold showed a convergence of alterations in BPD patients in genual and perigenual structures, with frontal white matter fractional anisotropy abnormalities partially encircling areas of increased mean diffusivity and global brain connectivity. Additionally, a cluster of enlarged amplitude of low-frequency fluctuations (high resting activity) was found involving part of the lefthippocampus and amygdala. In turn, this cluster showed increased resting functional connectivity with theanterior cingulate. Conclusions With a multimodal approach and without using a priori selected regions, we prove that structural and functional abnormality in BPD involves both temporolimbic and frontomedial structures as well as their connectivity. These structures have been previously related to behavioral and clinical symptoms in patients with BPD

    Brain imaging of executive function with the computerised multiple elements test

    No full text
    The Computerised Multiple Elements Test (CMET) is a novel executive task to assess goal management and maintenance suitable for use within the fMRI environment. Unlike classical executive paradigms, it resembles neuropsychological multi-elements tests that capture goal management in a more ecological way, by requiring the participant to switch between four simple games within a specified time period. The present study aims to evaluate an fMRI version of the CMET and examine its brain correlates. Thirty-one healthy participants performed the task during fMRI scanning. During each block, they were required to play four simple games, with the transition between games being made either voluntarily (executive condition) or automatically (control condition). The executive condition was associated with increased activity in fronto-parietal and cingulo-opercular regions, with anterior insula activity linked to better task performance. In an additional analysis, the activated regions showed to form functional networks during resting-state and to overlap the executive fronto-parietal and cingulo-opercular networks identified in resting-state with independently defined seeds. These results show the ability of the CMET to elicit activity in well-known executive networks, becoming a potential tool for the study of executive impairment in neurological and neuropsychiatric populations in a more ecological way than classical paradigms

    Gene Expression Analysis of the Bone Marrow Microenvironment Reveals Distinct Immunotypes in Smoldering Multiple Myeloma Associated to Progression to Symptomatic Disease

    Get PDF
    Altres ajuts: This work was supported in part by Grants PI16/00423, PI19/ 00669 and PI20/00436 from Instituto de Salud Carlos III (Ministerio de Economía y Competitividad, co-funded by Fondo Europeo de Desarrollo Regional (FEDER)-Una manera de Hacer Europa) and the CERCA Programme/Generalitat de Catalunya.Background: We previously reported algorithms based on clinical parameters and plasma cell characteristics to identify patients with smoldering multiple myeloma (SMM) with higher risk of progressing who could benefit from early treatment. In this work, we analyzed differences in the immune bone marrow (BM) microenvironment in SMM to better understand the role of immune surveillance in disease progression and to identify immune biomarkers associated to higher risk of progression. Methods: Gene expression analysis of BM cells from 28 patients with SMM, 22 patients with monoclonal gammopathy of undetermined significance (MGUS) and 22 patients with symptomatic MM was performed by using Nanostring Technology. Results: BM cells in SMM compared to both MGUS and symptomatic MM showed upregulation of genes encoding for key molecules in cytotoxicity. However, some of these cytotoxic molecules positively correlated with inhibitory immune checkpoints, which may impair the effector function of BM cytotoxic cells. Analysis of 28 patients with SMM revealed 4 distinct clusters based on immune composition and activation markers. Patients in cluster 2 showed a significant increase in expression of cytotoxic molecules but also inhibitory immune checkpoints compared to cluster 3, suggesting the presence of cytotoxic cells with an exhausted phenotype. Accordingly, patients in cluster 3 had a significantly longer progression free survival. Finally, individual gene expression analysis showed that higher expression of TNF superfamily members (TNF, TNFAIP3, TNFRSF14) was associated with shorter progression free survival. Conclusions: Our results suggest that exhausted cytotoxic cells are associated to high-risk patients with SMM. Biomarkers overexpressed in patients with this immune gene profile in combination with clinical parameters and PC characterization may be useful to identify SMM patients with higher risk of progression

    Altered brain responses to specific negative emotions in schizophrenia

    No full text
    Deficits in emotion processing are a core feature of schizophrenia, but their neurobiological bases are poorly understood. Previous research, mainly focused on emotional face processing and emotion recognition deficits, has shown controverted results. Furthermore, the use of faces has been questioned for not entailing an appropriate stimulus to study emotional processing. This highlights the importance of investigating emotional processing abnormalities using evocative stimuli. For the first time, we have studied the brain responses to scenic stimuli in patients with schizophrenia. We selected scenes from the IAPS that elicit fear, disgust, happiness, and sadness. Twenty-six patients with schizophrenia and thirty age-, sex- and premorbid IQ-matched healthy controls were included. Behavioral task results show that patients tended to misclassify disgust and sadness as fear. Brain responses in patients were different from controls in images eliciting disgust and fear. In response to disgust images, patients hyperactivated the right temporal cortex, which was not activated by the controls. With fear images, hyperactivation was observed in brain regions involved in fear processing, including midline regions from the medial frontal cortex to the anterior cingulate cortex, the superior frontal gyrus, inferior and superior temporal cortex, and visual areas. These results suggest that schizophrenia is characterized by hyper-responsivity to stimuli evoking high-arousal, negative emotions, and a bias towards fear in emotion recognition

    NRN1 Gene as a Potential Marker of Early-Onset Schizophrenia : Evidence from Genetic and Neuroimaging Approaches

    No full text
    Included in the neurotrophins family, the Neuritin 1 gene (NRN1) has emerged as an attractive candidate gene for schizophrenia (SZ) since it has been associated with the risk for the disorder and general cognitive performance. In this work, we aimed to further investigate the association of NRN1 with SZ by exploring its role on age at onset and its brain activity correlates. First, we developed two genetic association analyses using a family-based sample (80 early-onset (EO) trios (offspring onset ≤ 18 years) and 71 adult-onset (AO) trios) and an independent case-control sample (120 healthy subjects (HS), 87 EO and 138 AO patients). Second, we explored the effect of NRN1 on brain activity during a working memory task (N-back task; 39 HS, 39 EO and 39 AO; matched by age, sex and estimated IQ). Different haplotypes encompassing the same three Single Nucleotide Polymorphisms(SNPs, rs3763180-rs10484320-rs4960155) were associated with EO in the two samples (GCT, TCC and GTT). Besides, the GTT haplotype was associated with worse N-back task performance in EO and was linked to an inefficient dorsolateral prefrontal cortex activity in subjects with EO compared to HS. Our results show convergent evidence on the NRN1 association with EO both from genetic and neuroimaging approaches, highlighting the role of neurotrophins in the pathophysiology of SZ
    corecore