8 research outputs found

    Methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism and high plasma homocysteine in chronic hepatitis C (CHC) infected patients from the Northeast of Brazil

    Get PDF
    <p>Abstract</p> <p>Background/Aim</p> <p>Hyperhomocysteinemia due to Methylenetetrahydrofolate Reductase (<it>MTHFR</it>) gene, in particular the C677T (Ala222Val) polymorphism were recently associated to steatosis and fibrosis. We analyzed the frequency of <it>MTHFR </it>gene in a cross-sectional study of patients affected by Chronic Hepatitis C (CHC) from Northeast of Brazil.</p> <p>Method</p> <p>One hundred seven-four untreated patients with CHC were genotyped for the C677T <it>MTHFR</it>. Genomic DNA was extracted from peripheral blood cells and the C677T <it>MTHFR </it>polymorphism was identified by PCR-RFLP. The homocysteine (Hcy) levels were determined by chemiluminescence method. All patients were negative for markers of Wilson's disease, hemochromatosis and autoimmune diseases and have current and past daily alcohol intake less than 100 g/week.</p> <p>Results</p> <p>Among subjects infected with CHC genotype non-1 the frequency of <it>MTHFR </it>genotypes TT was 9.8% <it>versus </it>4.4% genotype 1 (p = 0.01). Nevertheless, association was found between the <it>MTHFR </it>genotype TT × CT/CC polymorphism and the degree of steatosis and fibrosis in both hepatitis C genotype (p < 0.05). A significant difference was found on plasma Hcy levels in patients with steatosis regardless of HCV genotype (p = 0.03).</p> <p>Conclusion</p> <p>Our results indicate that plasma Hcy levels is highly prevalent in subjects with chronic hepatits C with steatosis regardless of HCV genotype and vitamin deficiency. The presence of genotype TT of <it>MTHFR </it>C677T polymorphism was more common in CHC genotype non-1 infected patient regardless of histopathological classification and genotype TT+CT frequencies were significant in the presence of fibrosis grade 1+2 and of steatosis in CHC infected patients from the northeast of Brazil regardless of HCV genotype. The genetic susceptibility of <it>MTHFR </it>C677T polymorphism should be confirmed in a large population.</p

    Notes for genera – Ascomycota

    No full text
    Knowledge of the relationships and thus the classification of fungi, has developed rapidly with increasingly widespread use of molecular techniques, over the past 10--15 years, and continues to accelerate. Several genera have been found to be polyphyletic, and their generic concepts have subsequently been emended. New names have thus been introduced for species which are phylogenetically distinct from the type species of particular genera. The ending of the separate naming of morphs of the same species in 2011, has also caused changes in fungal generic names. In order to facilitate access to all important changes, it was desirable to compile these in a single document. The present article provides a list of generic names of Ascomycota (approximately 6500 accepted names published to the end of 2016), including those which are lichen-forming. Notes and summaries of the changes since the last edition of `Ainsworth Bisby's Dictionary of the Fungi' in 2008 are provided. The notes include the number of accepted species, classification, type species (with location of the type material), culture availability, life-styles, distribution, and selected publications that have appeared since 2008. This work is intended to provide the foundation for updating the ascomycete component of the ``Without prejudice list of generic names of Fungi'' published in 2013, which will be developed into a list of protected generic names. This will be subjected to the XIXth International Botanical Congress in Shenzhen in July 2017 agreeing to a modification in the rules relating to protected lists, and scrutiny by procedures determined by the Nomenclature Committee for Fungi (NCF). The previously invalidly published generic names Barriopsis, Collophora (as Collophorina), Cryomyces, Dematiopleospora, Heterospora (as Heterosporicola), Lithophila, Palmomyces (as Palmaria) and Saxomyces are validated, as are two previously invalid family names, Bartaliniaceae and Wiesneriomycetaceae. Four species of Lalaria, which were invalidly published are transferred to Taphrina and validated as new combinations. Catenomycopsis Tibell Constant. is reduced under Chaenothecopsis Vain., while Dichomera Cooke is reduced under Botryosphaeria Ces. De Not. (Art. 59)
    corecore