35 research outputs found

    The Effect of Circulating Zinc, Selenium, Copper and Vitamin K1 on COVID-19 Outcomes:A Mendelian Randomization Study

    Get PDF
    Background & Aims: Previous results from observational, interventional studies and in vitro experiments suggest that certain micronutrients possess anti-viral and immunomodulatory activities. In particular, it has been hypothesized that zinc, selenium, copper and vitamin K(1) have strong potential for prophylaxis and treatment of COVID-19. We aimed to test whether genetically predicted Zn, Se, Cu or vitamin K(1) levels have a causal effect on COVID-19 related outcomes, including risk of infection, hospitalization and critical illness. Methods: We employed a two-sample Mendelian Randomization (MR) analysis. Our genetic variants derived from European-ancestry GWAS reflected circulating levels of Zn, Cu, Se in red blood cells as well as Se and vitamin K(1) in serum/plasma. For the COVID-19 outcome GWAS, we used infection, hospitalization or critical illness. Our inverse-variance weighted (IVW) MR analysis was complemented by sensitivity analyses including a more liberal selection of variants at a genome-wide sub-significant threshold, MR-Egger and weighted median/mode tests. Results: Circulating micronutrient levels show limited evidence of association with COVID-19 infection, with the odds ratio [OR] ranging from 0.97 (95% CI: 0.87–1.08, p-value = 0.55) for zinc to 1.07 (95% CI: 1.00–1.14, p-value = 0.06)—i.e., no beneficial effect for copper was observed per 1 SD increase in exposure. Similarly minimal evidence was obtained for the hospitalization and critical illness outcomes with OR from 0.98 (95% CI: 0.87–1.09, p-value = 0.66) for vitamin K(1) to 1.07 (95% CI: 0.88–1.29, p-value = 0.49) for copper, and from 0.93 (95% CI: 0.72–1.19, p-value = 0.55) for vitamin K(1) to 1.21 (95% CI: 0.79–1.86, p-value = 0.39) for zinc, respectively. Conclusions: This study does not provide evidence that supplementation with zinc, selenium, copper or vitamin K(1) can prevent SARS-CoV-2 infection, critical illness or hospitalization for COVID-19

    Triangulating molecular evidence to prioritize candidate causal genes at established atopic dermatitis loci

    Get PDF
    GWASs for atopic dermatitis have identified 25 reproducible loci. We attempt to prioritize the candidate causal genes at these loci using extensive molecular resources compiled into a bioinformatics pipeline. We identified a list of 103 molecular resources for atopic dermatitis etiology, including expression, protein, and DNA methylation quantitative trait loci datasets in the skin or immune-relevant tissues, which were tested for overlap with GWAS signals. This was combined with functional annotation using regulatory variant prediction and features such as promoter‒enhancer interactions, expression studies, and variant fine mapping. For each gene at each locus, we condensed the evidence into a prioritization score. Across the investigated loci, we detected significant enrichment of genes with adaptive immune regulatory function and epidermal barrier formation among the top-prioritized genes. At eight loci, we were able to prioritize a single candidate gene (IL6R, ADO, PRR5L, IL7R, ETS1, INPP5D, MDM1, TRAF3). In addition, at 6 of the 25 loci, our analysis prioritizes less familiar candidates (SLC22A5, IL2RA, MDM1, DEXI, ADO, STMN3). Our analysis provides support for previously implicated genes at several atopic dermatitis GWAS loci as well as evidence for plausible additional candidates at others, which may represent potential targets for drug discovery

    Genome-wide association studies identify 137 genetic loci for DNA methylation biomarkers of aging

    Get PDF
    Background Biological aging estimators derived from DNA methylation data are heritable and correlate with morbidity and mortality. Consequently, identification of genetic and environmental contributors to the variation in these measures in populations has become a major goal in the field. Results Leveraging DNA methylation and SNP data from more than 40,000 individuals, we identify 137 genome-wide significant loci, of which 113 are novel, from genome-wide association study (GWAS) meta-analyses of four epigenetic clocks and epigenetic surrogate markers for granulocyte proportions and plasminogen activator inhibitor 1 levels, respectively. We find evidence for shared genetic loci associated with the Horvath clock and expression of transcripts encoding genes linked to lipid metabolism and immune function. Notably, these loci are independent of those reported to regulate DNA methylation levels at constituent clock CpGs. A polygenic score for GrimAge acceleration showed strong associations with adiposity-related traits, educational attainment, parental longevity, and C-reactive protein levels. Conclusion This study illuminates the genetic architecture underlying epigenetic aging and its shared genetic contributions with lifestyle factors and longevity.Peer reviewe

    European and multi-ancestry genome-wide association meta-analysis of atopic dermatitis highlights importance of systemic immune regulation

    Get PDF
    Atopic dermatitis (AD) is a common inflammatory skin condition and prior genome-wide association studies (GWAS) have identified 71 associated loci. In the current study we conducted the largest AD GWAS to date (discovery N = 1,086,394, replication N = 3,604,027), combining previously reported cohorts with additional available data. We identified 81 loci (29 novel) in the European-only analysis (which all replicated in a separate European analysis) and 10 additional loci in the multi-ancestry analysis (3 novel). Eight variants from the multi-ancestry analysis replicated in at least one of the populations tested (European, Latino or African), while two may be specific to individuals of Japanese ancestry. AD loci showed enrichment for DNAse I hypersensitivity and eQTL associations in blood. At each locus we prioritised candidate genes by integrating multi-omic data. The implicated genes are predominantly in immune pathways of relevance to atopic inflammation and some offer drug repurposing opportunities.</p

    The Forward Physics Facility at the High-Luminosity LHC

    Get PDF

    Genome-wide association studies identify 137 genetic loci for DNA methylation biomarkers of aging

    Get PDF
    Background Biological aging estimators derived from DNA methylation data are heritable and correlate with morbidity and mortality. Consequently, identification of genetic and environmental contributors to the variation in these measures in populations has become a major goal in the field. Results Leveraging DNA methylation and SNP data from more than 40,000 individuals, we identify 137 genome-wide significant loci, of which 113 are novel, from genome-wide association study (GWAS) meta-analyses of four epigenetic clocks and epigenetic surrogate markers for granulocyte proportions and plasminogen activator inhibitor 1 levels, respectively. We find evidence for shared genetic loci associated with the Horvath clock and expression of transcripts encoding genes linked to lipid metabolism and immune function. Notably, these loci are independent of those reported to regulate DNA methylation levels at constituent clock CpGs. A polygenic score for GrimAge acceleration showed strong associations with adiposity-related traits, educational attainment, parental longevity, and C-reactive protein levels. Conclusion This study illuminates the genetic architecture underlying epigenetic aging and its shared genetic contributions with lifestyle factors and longevity.</p

    The Effect of Circulating Zinc, Selenium, Copper and Vitamin K1 on COVID-19 Outcomes: A Mendelian Randomization Study

    No full text
    Background &amp; Aims: Previous results from observational, interventional studies and in vitro experiments suggest that certain micronutrients possess anti-viral and immunomodulatory activities. In particular, it has been hypothesized that zinc, selenium, copper and vitamin K1 have strong potential for prophylaxis and treatment of COVID-19. We aimed to test whether genetically predicted Zn, Se, Cu or vitamin K1 levels have a causal effect on COVID-19 related outcomes, including risk of infection, hospitalization and critical illness. Methods: We employed a two-sample Mendelian Randomization (MR) analysis. Our genetic variants derived from European-ancestry GWAS reflected circulating levels of Zn, Cu, Se in red blood cells as well as Se and vitamin K1 in serum/plasma. For the COVID-19 outcome GWAS, we used infection, hospitalization or critical illness. Our inverse-variance weighted (IVW) MR analysis was complemented by sensitivity analyses including a more liberal selection of variants at a genome-wide sub-significant threshold, MR-Egger and weighted median/mode tests. Results: Circulating micronutrient levels show limited evidence of association with COVID-19 infection, with the odds ratio [OR] ranging from 0.97 (95% CI: 0.87&ndash;1.08, p-value = 0.55) for zinc to 1.07 (95% CI: 1.00&ndash;1.14, p-value = 0.06)&mdash;i.e., no beneficial effect for copper was observed per 1 SD increase in exposure. Similarly minimal evidence was obtained for the hospitalization and critical illness outcomes with OR from 0.98 (95% CI: 0.87&ndash;1.09, p-value = 0.66) for vitamin K1 to 1.07 (95% CI: 0.88&ndash;1.29, p-value = 0.49) for copper, and from 0.93 (95% CI: 0.72&ndash;1.19, p-value = 0.55) for vitamin K1 to 1.21 (95% CI: 0.79&ndash;1.86, p-value = 0.39) for zinc, respectively. Conclusions: This study does not provide evidence that supplementation with zinc, selenium, copper or vitamin K1 can prevent SARS-CoV-2 infection, critical illness or hospitalization for COVID-19
    corecore